Large, Negative Magnetoresistance in an Oleic Acid-Coated Fe3O4 Nanocrystal Self-Assembled Film

2013 ◽  
Vol 5 (22) ◽  
pp. 11584-11589 ◽  
Author(s):  
Shigemi Kohiki ◽  
Tomoki Kinoshita ◽  
Koichiro Nara ◽  
Kotone Akiyama-Hasegawa ◽  
Masanori Mitome
Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1791
Author(s):  
Marco Vizcarra-Pacheco ◽  
María Ley-Flores ◽  
Ana Mizrahim Matrecitos-Burruel ◽  
Ricardo López-Esparza ◽  
Daniel Fernández-Quiroz ◽  
...  

One of the main challenges facing materials science today is the synthesis of new biodegradable and biocompatible materials capable of improving existing ones. This work focused on the synthesis of new biomaterials from the bioconjugation of oleic acid with L-cysteine using carbodiimide. The resulting reaction leads to amide bonds between the carboxylic acid of oleic acid and the primary amine of L-cysteine. The formation of the bioconjugate was corroborated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and nuclear magnetic resonance (NMR). In these techniques, the development of new materials with marked differences with the precursors was confirmed. Furthermore, NMR has elucidated a surfactant structure, with a hydrophilic part and a hydrophobic section. Ultraviolet-visible spectroscopy (UV-Vis) was used to determine the critical micellar concentration (CMC) of the bioconjugate. Subsequently, light diffraction (DLS) was used to analyze the size of the resulting self-assembled structures. Finally, transmission electron microscopy (TEM) was obtained, where the shape and size of the self-assembled structures were appreciated.


Nanoscale ◽  
2018 ◽  
Vol 10 (17) ◽  
pp. 8313-8319 ◽  
Author(s):  
Elena V. Ushakova ◽  
Sergei A. Cherevkov ◽  
Aleksandr P. Litvin ◽  
Peter S. Parfenov ◽  
Igor A. Kasatkin ◽  
...  

We report a new type of metamaterial comprising a highly ordered 3D network of 3–7 nm lead sulfide quantum dots self-assembled in an organic matrix formed by amphiphilic ligands (oleic acid molecules).


2020 ◽  
Author(s):  
Adam Milsom ◽  
Adam M. Squires ◽  
Andrew D. Ward ◽  
Nicholas J. Terrill ◽  
Christian Pfrang

<p>This study focuses on the effect of surface film thickness on the ozone reaction kinetics of films of a self-assembled unsaturated fatty acid aerosol proxy coated inside quartz capillaries. It also reveals evidence for reaction stagnation and stopping for the thickest films, leaving a significant amount of unreacted material and suggesting that an inert product is formed during the course of the reaction. These findings have implications for the atmospheric lifetime of such a system.</p><p>The oleic acid-ozone reaction is used as the model system for heterogeneous oxidation reactions in organic aerosols. Major sources of oleic acid in the atmosphere include marine and cooking emissions. Oxidation of organic aerosols is known to affect Cloud Condensation Nuclei (CCN) generation and therefore cloud formation. It follows that factors affecting aerosol reactivity have an effect on cloud formation potential and therefore also on the climate.</p><p>In our experiments, oleic acid is mixed with its sodium salt (sodium oleate) to form a highly viscous self-assembled lamellar phase system observable using a synchrotron-based technique: Small Angle X-ray Scattering (SAXS). Here, we take advantage of intense synchrotron radiation to probe our coated capillary films. We use the observed decay of the self-assembled scattering peak as a function of time exposed to ozone. We have obtained ~50 kinetic decay parameters spanning a range of film thicknesses, showing a drastic increase in reaction kinetics with decreasing film thickness.</p><p>There is a linear relationship between increasing film thickness and amount of self-assembled material (reactant) remaining at the end of the reaction. This implies that a reaction product hinders further reactivity and that this product may take a while to form, explaining the occurrence only in thicker films.</p><p>Modelling studies will help us understand the mechanism behind these observations and to relate to a previously-postulated idea of an inert “crust” of products forming on the surface of this viscous aerosol proxy (Pfrang et al., Atmos. Chem. Phys., 2011, 11, 7343-7354).</p><p>In summary, we demonstrate thickness-dependent reaction kinetic parameters which vary significantly with film thickness, implying that the atmospheric lifetime for a film is sensitive to the film thickness. We present evidence for reaction stagnation by an as of yet unknown inert product. Kinetic modelling is ongoing in order to explain these findings.</p>


2013 ◽  
Vol 9 (8) ◽  
pp. 1416-1431 ◽  
Author(s):  
Phuong Ha-Lien Tran ◽  
Thao Truong-Dinh Tran ◽  
Toi Van Vo ◽  
Chau Le-Ngoc Vo ◽  
Beom-Jin Lee

2009 ◽  
Vol 94 (1) ◽  
pp. 012507 ◽  
Author(s):  
S. Wang ◽  
F. J. Yue ◽  
D. Wu ◽  
F. M. Zhang ◽  
W. Zhong ◽  
...  

Langmuir ◽  
2010 ◽  
Vol 26 (14) ◽  
pp. 11670-11679 ◽  
Author(s):  
Stefan Salentinig ◽  
Laurent Sagalowicz ◽  
Otto Glatter

Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 68
Author(s):  
Sang-Won Jeon ◽  
Han-Sol Jin ◽  
Young-Joon Park

This study aimed to optimize and evaluate self-assembled liquid crystalline nanoparticles (SALCs) prepared from phospholipids and oleic acid for enhancing the absorption of ω-3s. We explored the structure and optimal formulation of SALCs, which are composed of ω-3 ethyl ester (ω-3 EE), phospholipids, and oleic acid, using a ternary diagram and evaluated the improvement in ω-3 dissolution, permeation, and oral bioavailability. The in vitro dissolution and pharmacokinetics of ω-3 SALCs were compared with those of Omacor soft capsules (as the reference). The shape of the liquid crystal was determined according to the composition of phospholipids, oleic acids, and ω-3s and was found to be in cubic, lamellar, and hexagonal forms. The dissolution rates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) obtained from ω-3 SALCs were 1.7 to 2.3-fold higher than those of the Omacor soft capsules. Furthermore, a pharmacokinetic study in male beagle dogs revealed that ω-3 SALCs increased the oral bioavailability of ω-3 EE by 2.5-fold for EPA and 3.1-fold for DHA compared with the reference. We found an optimal formulation that spontaneously forms liquid crystal-based nanoparticles, improving the bioavailability of EPA and DHA, not found in the existing literature. Our findings offer insight into the impact of nanoparticle phase on the oral delivery of oil-soluble drugs and provide a novel ω-3 EE formulation that improves the bioavailability of EPA and DHA.


Sign in / Sign up

Export Citation Format

Share Document