scholarly journals New Insights on the Kinetic Analysis of Isothermal Data: The Independence of the Activation Energy from the Assumed Kinetic Model

2014 ◽  
Vol 29 (1) ◽  
pp. 392-397 ◽  
Author(s):  
Pedro E. Sánchez-Jiménez ◽  
Antonio Perejón ◽  
Luis A. Pérez-Maqueda ◽  
José M. Criado
2019 ◽  
Vol 25 (4) ◽  
pp. 223
Author(s):  
Matías Humberto Sosa Lissarrague ◽  
Alfredo Juan ◽  
César Lanz ◽  
Bruno La Rocca ◽  
Alberto Picasso

<p class="AMSmaintext1">The HP40-Nb heat resistant alloy (35Ni-25Cr-Nb) was analysed by means of optical microscopy after aging treatments at 1073 and 1173 K for different times, in order to apply the classic Johnson – Mehl - Avrami – Kolmogorov kinetic model (JMAK), and thus calculate the activation energy of secondary M<sub>23</sub>C<sub>6 </sub>precipitation, which occurs during thermal aging. The relevance of this theoretical analysis is to infer the mechanism that controls the nucleation and growth of M<sub>23</sub>C<sub>6</sub> secondary carbides, since the amount and morphology of these phase influences the mechanical properties as well as the corrosion resistance in service. After performing the kinetic analysis using the JMAK model, the activation energy was found to be 208 kJ/mol, which would indicate that the secondary precipitation in this alloy is controlled by the Cr-diffusion phenomenon along the austenitic matrix.</p>


2012 ◽  
Vol 518-523 ◽  
pp. 3904-3907 ◽  
Author(s):  
Quan Cheng Zhou ◽  
Hong Mei Zhang ◽  
De Mao Li

Pyrolysis and kinetic analysis of Xanthoceras Sorbifolia polysaccharide were evaluated using the TG-DTG/DTA method. The results indicated that its mass loss occured in three-step process . The first step could be attributed to the expulsion of water of crystallization at 25 - 176 °C. The second step corresponded to the large scale degradation of X. Sorbifolia polysaccharide in the temperature range of 179 - 661 °C. The final step was slow degradation of residues. Heating rate had significant effects on the pyrolysis of X. Sorbifolia polysaccharide and nitrogen could improve its stability. A close value of activation energy E of the thermal degradation process has been obtained by FWO, KAS and Popescu methods. The possible kinetic model was estimated to be Jander 5 (g(α)=[1-(1-α)1/3]1/2.


2011 ◽  
Vol 396-398 ◽  
pp. 1297-1301
Author(s):  
Dong Mei Wang ◽  
Lian Zhou Jiang ◽  
Xiao Yan Zhao ◽  
Chao Zhang ◽  
Yue Ma

The effect of blanching on β-carotene degradation of cabbages during drying was evaluated, and the β-carotene degradation was further simulated by a kinetic model. The β-carotene content of the cabbages decreased when the drying time and temperature increased. The blanched cabbages hold the β-carotene content and color of the cabbage as the unblanched one comparing with the un-blanched cabbages. The kinetic analysis showed the activation energy of the blanched and un-blanched cabbages was 14475.38 and 15429.36 J/mol, which was the main reason resulted in the mentioned results. Therefore, blanching helped to hold the β-carotene content and color of cabbages.


2015 ◽  
Vol 121 (3) ◽  
pp. 1403-1410 ◽  
Author(s):  
Benedetta de Caprariis ◽  
Maria Laura Santarelli ◽  
Marco Scarsella ◽  
Carlos Herce ◽  
Nicola Verdone ◽  
...  

Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1633-1648 ◽  
Author(s):  
Adam Arkin ◽  
John Ross ◽  
Harley H McAdams

Abstract Fluctuations in rates of gene expression can produce highly erratic time patterns of protein production in individual cells and wide diversity in instantaneous protein concentrations across cell populations. When two independently produced regulatory proteins acting at low cellular concentrations competitively control a switch point in a pathway, stochastic variations in their concentrations can produce probabilistic pathway selection, so that an initially homogeneous cell population partitions into distinct phenotypic subpopulations. Many pathogenic organisms, for example, use this mechanism to randomly switch surface features to evade host responses. This coupling between molecular-level fluctuations and macroscopic phenotype selection is analyzed using the phage λ lysis-lysogeny decision circuit as a model system. The fraction of infected cells selecting the lysogenic pathway at different phage:cell ratios, predicted using a molecular-level stochastic kinetic model of the genetic regulatory circuit, is consistent with experimental observations. The kinetic model of the decision circuit uses the stochastic formulation of chemical kinetics, stochastic mechanisms of gene expression, and a statistical-thermodynamic model of promoter regulation. Conventional deterministic kinetics cannot be used to predict statistics of regulatory systems that produce probabilistic outcomes. Rather, a stochastic kinetic analysis must be used to predict statistics of regulatory outcomes for such stochastically regulated systems.


2021 ◽  
Vol 903 ◽  
pp. 143-148
Author(s):  
Svetlana Cornaja ◽  
Svetlana Zhizhkuna ◽  
Jevgenija Vladiko

Supported 3wt%Pd/α-Al₂O₃ catalyst was tested in selective oxidation of 1,2-propanediol by molecular oxygen. It was found that the catalyst is active in an alkaline water solution. Lactic acid was obtained as the main product of the reaction. Influence of different reaction conditions on 1,2-PDO conversion and oxidation process selectivity was studied. Partial kinetic orders of the reaction with respect to 1,2-propanediol, c0(NaOH), p(O2), n(1,2-PDO)/n(Pd)) were determined and an experimental kinetic model of the catalytic oxidation reaction was obtained. Activation energy of the process was calculated and was found to be about 53 ± 5 kJ/mol.


2001 ◽  
Vol 75 (11) ◽  
pp. 4984-4989 ◽  
Author(s):  
Simon K. Tsang ◽  
Brian M. McDermott ◽  
Vincent R. Racaniello ◽  
James M. Hogle

ABSTRACT We examined the role of soluble poliovirus receptor on the transition of native poliovirus (160S or N particle) to an infectious intermediate (135S or A particle). The viral receptor behaves as a classic transition state theory catalyst, facilitating the N-to-A conversion by lowering the activation energy for the process by 50 kcal/mol. In contrast to earlier studies which demonstrated that capsid-binding drugs inhibit thermally mediated N-to-A conversion through entropic stabilization alone, capsid-binding drugs are shown to inhibit receptor-mediated N-to-A conversion through a combination of enthalpic and entropic effects.


1959 ◽  
Vol 37 (9) ◽  
pp. 1462-1468 ◽  
Author(s):  
A. R. Blake ◽  
K. O. Kutschke

The pyrolysis of di-t-butyl peroxide has been reinvestigated and used as a source of methyl radicals to study the abstraction reaction between methyl radicals and formaldehyde. At low [HCHO]/[peroxide] ratios the system was simple enough for kinetic analysis, and a value of 6.6 kcal/mole was obtained for the activation energy. At higher [HCHO]/[peroxide] ratios the system became very complicated, possibly due to the increased importance of addition reactions.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2075
Author(s):  
Tan Phat Dao ◽  
Thanh Viet Nguyen ◽  
Thi Yen Nhi Tran ◽  
Xuan Tien Le ◽  
Ton Nu Thuy An ◽  
...  

Pomelo peel-derived essential oils have been gaining popularity due to greater demand for stress relief therapy or hair care therapy. In this study, we first performed optimization of parameters in the pomelo essential oil extraction process on a pilot scale to gain better insights for application in larger scale production. Then extraction kinetics, activation energy, thermodynamics, and essential oil quality during the extraction process were investigated during the steam distillation process. Three experimental conditions including material mass, steam flow rate, and extraction time were taken into consideration in response surface methodology (RSM) optimization. The optimal conditions were found as follows: sample weight of 422 g for one distillation batch, steam flow rate of 2.16 mL/min and extraction time of 106 min with the coefficient of determination R2 of 0.9812. The nonlinear kinetics demonstrated the compatibility of the kinetic model with simultaneous washing and unhindered diffusion with a washing rate constant of 0.1515 min−1 and a diffusion rate constant of 0.0236 min−1. The activation energy of the washing and diffusion process was 167.43 kJ.mol−1 and 96.25 kJ.mol−1, respectively. The thermodynamic value obtained at the ΔG° value was −35.02 kJ.mol−1. The quality of pomelo peel essential oil obtained by steam distillation was characterized by its high limonene content (96.996%), determined by GC-MS.


Sign in / Sign up

Export Citation Format

Share Document