Reaction ergodography for silicon nitride bond formation by the nitridation of silicon dioxide

1992 ◽  
Vol 96 (7) ◽  
pp. 3029-3033 ◽  
Author(s):  
Akitomo Tachibana ◽  
Yuzuru Kurosaki ◽  
Hiroyuki Fueno ◽  
Toshiaki Sera ◽  
Tokio Yamabe
Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yiingqi Shang ◽  
Hongquan Zhang ◽  
Yan Zhang

Aimed at the problem of the small wet etching depth in sapphire microstructure processing technology, a multilayer composite mask layer is proposed. The thickness of the mask layer is studied, combined with the corrosion rate of different materials on sapphire in the sapphire etching solution, different mask layers are selected for the corrosion test on the sapphire sheet, and then the corrosion experiment is carried out. The results show that at 250 °C, the choice is relatively high when PECVD (Plasma Enhanced Chemical Vapor Deposition) is used to make a double-layer composite film of silicon dioxide and silicon nitride. When the temperature rises to 300 °C, the selection ratio of the silicon dioxide layer grown by PECVD is much greater than that of the silicon nitride layer. Therefore, under high temperature conditions, a certain thickness of silicon dioxide can be used as a mask layer for deep cavity corrosion.


1995 ◽  
Vol 67 (13) ◽  
pp. 1902-1904 ◽  
Author(s):  
J. Staffa ◽  
D. Hwang ◽  
B. Luther ◽  
J. Ruzyllo ◽  
R. Grant

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ljubinko Timotijevic ◽  
Irfan Fetahovic ◽  
Djordje Lazarevic ◽  
Milos Vujisic

Effects of exposing several insulators, commonly used for various purposes in integrated circuits, to beams of protons have been investigated. Materials considered include silicon dioxide, silicon nitride, aluminium nitride, alumina, and polycarbonate (Lexan). The passage of proton beams through ultrathin layers of these materials has been modeled by Monte Carlo simulations of particle transport. Parameters that have been varied in simulations include proton energy and insulating layer thickness. Materials are compared according to both ionizing and nonionizing effects produced by the passage of protons.


2008 ◽  
Vol 16 (17) ◽  
pp. 12987 ◽  
Author(s):  
Kazuhiro Ikeda ◽  
Robert E. Saperstein ◽  
Nikola Alic ◽  
Yeshaiahu Fainman

1999 ◽  
Vol 573 ◽  
Author(s):  
J. W. Lee ◽  
K. D. Mackenzie ◽  
D. Johnson ◽  
S. J. Pearton ◽  
F. Ren ◽  
...  

ABSTRACTHigh-density plasma technology is becoming increasingly attractive for the deposition of dielectric films such as silicon nitride and silicon dioxide. In particular, inductively-coupled plasma chemical vapor deposition (ICPCVD) offers a great advantage for low temperature processing over plasma-enhanced chemical vapor deposition (PECVD) for a range of devices including compound semiconductors. In this paper, the development of low temperature (< 200°C) silicon nitride and silicon dioxide films utilizing ICP technology will be discussed. The material properties of these films have been investigated as a function of ICP source power, rf chuck power, chamber pressure, gas chemistry, and temperature. The ICPCVD films will be compared to PECVD films in terms of wet etch rate, stress, and other film characteristics. Two different gas chemistries, SiH4/N2/Ar and SiH4/NH3/He, were explored for the deposition of ICPCVD silicon nitride. The ICPCVD silicon dioxide films were prepared from SiH4/O2/Ar. The wet etch rates of both silicon nitride and silicon dioxide films are significantly lower than films prepared by conventional PECVD. This implies that ICPCVD films prepared at these low temperatures are of higher quality. The advanced ICPCVD technology can also be used for efficient void-free filling of high aspect ratio (3:1) sub-micron trenches.


Sign in / Sign up

Export Citation Format

Share Document