Temperature dependence of the etch rate and selectivity of silicon nitride over silicon dioxide in remote plasma NF3/Cl2

1995 ◽  
Vol 67 (13) ◽  
pp. 1902-1904 ◽  
Author(s):  
J. Staffa ◽  
D. Hwang ◽  
B. Luther ◽  
J. Ruzyllo ◽  
R. Grant
1996 ◽  
Vol 447 ◽  
Author(s):  
Simon M. Karecki ◽  
Laura C. Pruette ◽  
L. Rafael Reif

AbstractPresently, the semiconductor industry relies almost exclusively on perfluorocompounds (e.g., tetrafluoromethane, hexafluoroethane, nitrogen trifluoride. sulfur hexafluoride, and. more recently, octafluoropropane) for the etching of silicon dioxide and silicon nitride films in wafer patterning and PECVD (plasma enhanced chemical vapor deposition) chamber cleaning applications. The use of perfluorocompounds (PFCs) by the industry is considered problematic because of the high global warming potentials (GWPs) associated with these substances. Potential replacements for perfluorocompounds are presently being evaluated at MIT. In an initial stage of the study, intended to screen potential candidates on the basis of etch performance, a large number of compounds is being tested in a commercially available magnetically enhanced reactive ion etch tool. The potential alternatives discussed in this work are trifluoroacetic anhydride (TFAA) and three members of the iodofluorocarbon (IFC) family – iodotrifluoromethane, iodopentafluorocthane, and 2-iodoheptafluoropropane. This paper will present the results of etch rate comparisons between TFAA and octafluoropropane, a perfluorinated dielectric etchant. Designed experiment (DOE) methodology, combined with neural network software, was used to study a broad parameter space of reactor conditions. The effects of pressure, magnetic field, and gas flow rates were studied. Additionally, more limited tests were carried out with the three iodofluorocarbon gases. Etch rate data, as well as Auger electron spectroscopy data from substrates exposed to IFC plasmas will be presented. All gases were evaluated using both silicon dioxide as well as silicon nitride substrates. Results indicate that these compounds may be potentially viable in plasma etching applications.


1996 ◽  
Vol 449 ◽  
Author(s):  
C. B. Vartuli ◽  
J. W. Lee ◽  
J. D. MacKenzie ◽  
S. J. Pearton ◽  
C. R. Abernathy ◽  
...  

ABSTRACTICl/Ar ECR discharges provide the fastest dry etch rates reported for GaN, 1.3 µm/min. These rates are much higher than with Cl2/Ar, CH4/H2/Ar or other plasma chemistries. InN etch rates up to 1.15 µm/min and 0.7 µm/min for In0.5Ga0.5N are obtained, with selectivities up to 5 with no preferential loss of N at low rf powers and no significant residues remaining. The rates are much lower with IBr/Ar, ranging from 0.15 µm/min for GaN to 0.3 µm/min for InN. There is little dependence on microwave power for either chemistry because of the weakly bound nature of IC1 and IBr. In all cases the etch rates are limited by the initial bond breaking that must precede etch product formation and there is a good correlation between materials bond energy and etch rate. The fact that low microwave power can be employed is beneficial from the viewpoint that photoresist masks are stable under these conditions, and there is no need for use of silicon nitride or silicon dioxide. Selectivities for GaN over A1N with IC1 and IBr are still lower than with Cl2- only.


2014 ◽  
Vol 211 (9) ◽  
pp. 2166-2171 ◽  
Author(s):  
Woochool Jang ◽  
Heeyoung Jeon ◽  
Chunho Kang ◽  
Hyoseok Song ◽  
Jingyu Park ◽  
...  

2021 ◽  
Author(s):  
Won Oh Lee ◽  
Ki Hyun Kim ◽  
Doo San Kim ◽  
You Jin Ji ◽  
Ji Eun Kang ◽  
...  

Abstract Precise and selective removal of silicon nitride in a SiNx/SiOy stack is crucial for a current 3D-NAND (not and) fabrication process. In this study, fast and ultra-high selective isotropic etching of SiNx have been studied using a ClF3/H2 remote plasma in an inductively coupled plasma system and a mechanism of SiNx etching was investigated by focusing on the role of Cl, F, and H radicals in the plasma. The SiNx etch rate over 800 Å/min with the etch selectivity of ~130 could be observed under a ClF3 remote plasma at a room temperature. Furthermore, compromising the etch rate of SiNx by adding H2 to the ClF3 plasma, the etch selectivity of SiNx over SiOy close to ~ 200 could be obtained. The etch characteristics of SiNx and SiOy with increasing the process temperature demonstrated the higher activation energy of SiOy compared to that of SiNx with ClF3 plasma.


1998 ◽  
Vol 16 (4) ◽  
pp. 2047-2056 ◽  
Author(s):  
B. E. E. Kastenmeier ◽  
P. J. Matsuo ◽  
G. S. Oehrlein ◽  
J. G. Langan

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yiingqi Shang ◽  
Hongquan Zhang ◽  
Yan Zhang

Aimed at the problem of the small wet etching depth in sapphire microstructure processing technology, a multilayer composite mask layer is proposed. The thickness of the mask layer is studied, combined with the corrosion rate of different materials on sapphire in the sapphire etching solution, different mask layers are selected for the corrosion test on the sapphire sheet, and then the corrosion experiment is carried out. The results show that at 250 °C, the choice is relatively high when PECVD (Plasma Enhanced Chemical Vapor Deposition) is used to make a double-layer composite film of silicon dioxide and silicon nitride. When the temperature rises to 300 °C, the selection ratio of the silicon dioxide layer grown by PECVD is much greater than that of the silicon nitride layer. Therefore, under high temperature conditions, a certain thickness of silicon dioxide can be used as a mask layer for deep cavity corrosion.


1990 ◽  
Vol 201 ◽  
Author(s):  
Honglie Shen ◽  
Genqing Yang ◽  
Zuyao Zhou ◽  
Guanqun Xia ◽  
Shichang Zou

AbstractDual implantations of Si+ and P+ into InP:Fe were performed both at 200°C and room temperature. Si+ ions were implanted by 150keV with doses ranging from 5×1013 /cm2 to 1×1015 /cm2, while P+ ions were implanted by 110keV. 160keV and 180keV with doses ranging from 1×l013 /cm2 to 1×1015 /cm2. Hall measurements and photoluminescence spectra were used to characterize the silicon nitride encapsulated annealed samples. It was found that enhanced activation can be obtained by Si+ and P+ dual implantations. The optimal condition for dual implantations is that the atomic distribution of implanted P overlaps that of implanted si with the same implant dose. For a dose of 5×l014 /cm2, the highest activation for dual implants is 70% while the activation for single implant is 40% after annealing at 750°C for 15 minutes. PL spectrum measurement was carried out at temperatures from 11K to 100K. A broad band at about 1.26eV was found in Si+ implanted samples, of which the intensity increased with increasing of the Si dose and decreased with increasing of the co-implant P+ dose. The temperature dependence of the broad band showed that it is a complex (Vp-Sip) related band. All these results indicate that silicon is an amphoteric species in InP.


1992 ◽  
Vol 96 (7) ◽  
pp. 3029-3033 ◽  
Author(s):  
Akitomo Tachibana ◽  
Yuzuru Kurosaki ◽  
Hiroyuki Fueno ◽  
Toshiaki Sera ◽  
Tokio Yamabe

Sign in / Sign up

Export Citation Format

Share Document