Electrochemical reactions and charge transport in undiluted room-temperature melts of oligo(ethylene glycol)-based electron carriers

1993 ◽  
Vol 115 (17) ◽  
pp. 7896-7897 ◽  
Author(s):  
Christopher S. Velazquez ◽  
James E. Hutchison ◽  
Royce W. Murray
Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2047
Author(s):  
Naofumi Naga ◽  
Mitsusuke Sato ◽  
Kensuke Mori ◽  
Hassan Nageh ◽  
Tamaki Nakano

Addition reactions of multi-functional amine, polyethylene imine (PEI) or diethylenetriamine (DETA), and poly(ethylene glycol) diglycidyl ether (PEGDE) or poly(ethylene glycol) diacrylate (PEGDA), have been investigated to obtain network polymers in H2O, dimethyl sulfoxide (DMSO), and ethanol (EtOH). Ring opening addition reaction of the multi-functional amine and PEGDE in H2O at room temperature or in DMSO at 90 °C using triphenylphosphine as a catalyst yielded gels. Aza-Michael addition reaction of the multi-functional amine and PEGDA in DMSO or EtOH at room temperature also yielded corresponding gels. Compression test of the gels obtained with PEI showed higher Young’s modulus than those with DETA. The reactions of the multi-functional amine and low molecular weight PEGDA in EtOH under the specific conditions yielded porous polymers induced by phase separation during the network formation. The morphology of the porous polymers could be controlled by the reaction conditions, especially monomer concentration and feed ratio of the multi-functional amine to PEGDA of the reaction system. The porous structure was formed by connected spheres or a co-continuous monolithic structure. The porous polymers were unbreakable by compression, and their Young’s modulus increased with the increase in the monomer concentration of the reaction systems. The porous polymers absorbed various solvents derived from high affinity between the polyethylene glycol units in the network structure and the solvents.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Li ◽  
Yang Li ◽  
Peng Li ◽  
Bin Fang ◽  
Xu Yang ◽  
...  

AbstractNonmagnetic Rashba systems with broken inversion symmetry are expected to exhibit nonreciprocal charge transport, a new paradigm of unidirectional magnetoresistance in the absence of ferromagnetic layer. So far, most work on nonreciprocal transport has been solely limited to cryogenic temperatures, which is a major obstacle for exploiting the room-temperature two-terminal devices based on such a nonreciprocal response. Here, we report a nonreciprocal charge transport behavior up to room temperature in semiconductor α-GeTe with coexisting the surface and bulk Rashba states. The combination of the band structure measurements and theoretical calculations strongly suggest that the nonreciprocal response is ascribed to the giant bulk Rashba spin splitting rather than the surface Rashba states. Remarkably, we find that the magnitude of the nonreciprocal response shows an unexpected non-monotonical dependence on temperature. The extended theoretical model based on the second-order spin–orbit coupled magnetotransport enables us to establish the correlation between the nonlinear magnetoresistance and the spin textures in the Rashba system. Our findings offer significant fundamental insight into the physics underlying the nonreciprocity and may pave a route for future rectification devices.


1977 ◽  
Vol 23 (9) ◽  
pp. 1170-1177 ◽  
Author(s):  
David A. Cotter

Polyalcohols such as ethylene glycol and glycerol at 3 M penetrate and activate spores of Dictyostelium discoideum incubated at room temperature. Higher concentrations of ethylene glycol result in lysis upon suspension of spores in dilute phosphate buffer. Erythritol and arabitol at 3 M do not penetrate or activate D. discoideum spores.Air-dried spores or those incubated in 2 M sucrose solutions are not activated with the usual heat treatment of 45 °C for 30 min. The plasmolyzed spores are activated at temperatures above 45 °C when heated in the presence of 2 M sucrose for 30 min. The temperature for maximum activation and the temperature for thermal inactivation of spores are raised 7–10 °C in high sucrose concentrations. Long-term incubation of heat-activated spores in 2 M sucrose solutions does not result in a return to dormancy.Moderate sucrose concentrations near 0.2 M do not block the heat-induced activation process but must be removed from the spore population to prevent a return to dormancy within 6 h. Other polyhydric compounds at 0.25 M concentration also cause spore deactivation within 6 h of room temperature incubation. Oxygen uptake of spores undergoing deactivation in 0.18 M sucrose is inhibited as compared to control levels. Moderate concentrations of sucrose do not block the early events of postactivation lag and the spores accumulate at the end of the lag phase. The longer the spores remain unswollen at the end of the postactivation lag phase, the greater the percentage of spores which return to dormancy. The effects of moderate sucrose concentration (lowered water activity) are not duplicated by the same quantity of Ficoll, indicating that the colligative properties of the sucrose solutions are responsible for deactivation.


Science ◽  
2018 ◽  
Vol 362 (6419) ◽  
pp. 1131-1134 ◽  
Author(s):  
Aristide Gumyusenge ◽  
Dung T. Tran ◽  
Xuyi Luo ◽  
Gregory M. Pitch ◽  
Yan Zhao ◽  
...  

Although high-temperature operation (i.e., beyond 150°C) is of great interest for many electronics applications, achieving stable carrier mobilities for organic semiconductors at elevated temperatures is fundamentally challenging. We report a general strategy to make thermally stable high-temperature semiconducting polymer blends, composed of interpenetrating semicrystalline conjugated polymers and high glass-transition temperature insulating matrices. When properly engineered, such polymer blends display a temperature-insensitive charge transport behavior with hole mobility exceeding 2.0 cm2/V·s across a wide temperature range from room temperature up to 220°C in thin-film transistors.


1963 ◽  
Vol 41 (1) ◽  
pp. 889-895 ◽  
Author(s):  
Phyllis S. Roberts

Ethylene glycols have been found to allow activation of purified preparations of human plasminogen. The activity of the enzyme formed, plasmin, was measured using TAMe (p-toluene-sulphonyl-L-arginine methyl ester) as a substrate. In 50% (v/v) solutions of these compounds at pH 7.6 and 30 °C, plasmin accumulated faster in diethylene and triethylene glycols than in glycerol, but in ethylene glycol no plasmin was found. When lower concentrations of ethylene glycol (from zero to 50%) and shorter times of incubation were used, plasmin was found. With equimolar solutions (4.3 M) of glycerol and the three glycols, only diethylene glycol showed a fast rate of accumulation of plasmin. A 50% triethylene glycol solution partially inhibited the rate of spontaneous activation but stabilized the plasmin formed and therefore enzyme accumulated. At room temperature more plasmin accumulated than at higher temperatures when plasminogen was incubated in 50% triethylene glycol solution, and no plasmin was found when plasminogen was incubated at pH 7.6, 30 °C, in 50% solutions of propylene glycols, several ethers of the ethylene glycols, several polymers of various glycols, and dioxane.


2016 ◽  
Vol 860 ◽  
pp. 17-20
Author(s):  
Buagun Samran ◽  
Emmanuel Nyambod Timah ◽  
Udom Tipparach

This paper presents the effect of ultrasonic treatment on the morphology and microstructure of TiO2 nanotubes prepared by DC anodization method. The TiO2 nanotubes were grown by one-face anodization at room temperature on titanium sheets of 0.25 mm thickness and 99.7% purity. The electrolyte was composed of ethylene glycol (EG), ammonium fluoride (0.3% wt NH4F) and deionized water (2% V H2O). A constant DC voltage of 50 V was applied during anodization for 2 hours. The samples were ultrasonically cleansed in ethanol for different extended periods of time: 0, 10, 30 and 50 minutes respectively. The samples were annealed at 450 °C for 2 hours. The surface morphology and microstructure of the TiO2 nanotubes formed were studied by XRD and SEM. The best result was obtained when the sampleswere ultrasonicated for 30 minutes.


2014 ◽  
Vol 50 (60) ◽  
pp. 8151-8153 ◽  
Author(s):  
N. Arjona ◽  
A. Palacios ◽  
A. Moreno-Zuria ◽  
M. Guerra-Balcázar ◽  
J. Ledesma-García ◽  
...  

AuPd/polyaniline was used for the first time, for ethylene glycol electrooxidation in a microfluidic fuel cell operated at room temperature.


Sign in / Sign up

Export Citation Format

Share Document