Self-Assembly Mechanism of Complex Corrugated Particles

Author(s):  
Lanqin Tang ◽  
Thi Vo ◽  
Xiaoxing Fan ◽  
Drew Vecchio ◽  
Tao Ma ◽  
...  
2019 ◽  
Author(s):  
Michael J. Strauss ◽  
Darya Asheghali ◽  
Austin Evans ◽  
Rebecca Li ◽  
Anton Chavez ◽  
...  

<p>Nanotubes assembled from macrocyclic precursors offer a unique combination of low dimensionality, structural rigidity, and distinct interior and exterior microenvironments. Usually the weak stacking energies of macrocycles limit the length or strength of the resultant nanotubes. Imine-linked macrocycles were recently found to assemble into high-aspect ratio (>10<sup>3</sup>), lyotropic nanotubes in the presence of excess acid. Yet these harsh conditions are incompatible with many functional groups and processing methods, and lower acid loadings instead catalyze macrocycle degradation. Here we report pyridine-2,6-diimine-linked macrocycles that assemble into high-aspect ratio nanotubes in the presence of less than 1 equiv of CF<sub>3</sub>CO<sub>2</sub>H per macrocycle. Analysis by gel permeation chromatography and fluorescence spectroscopy revealed a cooperative self-assembly mechanism. Nanofibers obtained by touch-spinning the pyridinium-based nanotubes exhibit Young’s moduli of 1.48 GPa, which exceeds that of many synthetic polymers and biological filaments. These findings will enable the design of structurally diverse nanotubes from synthetically accessible macrocycles. </p>


ACS Omega ◽  
2021 ◽  
Author(s):  
Juan M. Garcia-Garfido ◽  
Javier Enríquez ◽  
Ignacio Chi-Durán ◽  
Iván Jara ◽  
Leonardo Vivas ◽  
...  

2016 ◽  
Vol 40 (1) ◽  
pp. 571-577 ◽  
Author(s):  
Lu-feng Yang ◽  
De-qing Chu ◽  
Hui-lou Sun ◽  
Ge Ge

A proposed hierarchical self-assembly mechanism of the formation of flower-like vaterite superstructures.


2004 ◽  
Vol 2004 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Mourad Elhabiri ◽  
Josef Hamacek ◽  
Jean-Claude G. Bünzli ◽  
Anne-Marie Albrecht-Gary

2017 ◽  
Vol 29 (3) ◽  
pp. 703-713 ◽  
Author(s):  
Błażej Dziuk ◽  
Christopher G. Gianopoulos ◽  
Krzysztof Ejsmont ◽  
Bartosz Zarychta

ACS Omega ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 3143-3155 ◽  
Author(s):  
Gopal Pandit ◽  
Karabi Roy ◽  
Umang Agarwal ◽  
Sunanda Chatterjee

2019 ◽  
Vol 7 (11) ◽  
pp. 3286-3293 ◽  
Author(s):  
Baoxi Feng ◽  
Zhen Xu ◽  
Jiayu Wang ◽  
Fei Feng ◽  
Lin Wang ◽  
...  

A self-assembly mechanism is demonstrated for the formation of polymer nanofilms based on real-time visualization and molecular dynamics simulations.


2019 ◽  
Vol 20 (21) ◽  
pp. 5246 ◽  
Author(s):  
Ana G. Pedrosa ◽  
Tânia Francisco ◽  
Maria J. Ferreira ◽  
Tony A. Rodrigues ◽  
Aurora Barros-Barbosa ◽  
...  

In contrast to many protein translocases that use ATP or GTP hydrolysis as the driving force to transport proteins across biological membranes, the peroxisomal matrix protein import machinery relies on a regulated self-assembly mechanism for this purpose and uses ATP hydrolysis only to reset its components. The ATP-dependent protein complex in charge of resetting this machinery—the Receptor Export Module (REM)—comprises two members of the “ATPases Associated with diverse cellular Activities” (AAA+) family, PEX1 and PEX6, and a membrane protein that anchors the ATPases to the organelle membrane. In recent years, a large amount of data on the structure/function of the REM complex has become available. Here, we discuss the main findings and their mechanistic implications.


Sign in / Sign up

Export Citation Format

Share Document