Identification and Quantification of Phytochemical Composition and Anti-inflammatory, Cellular Antioxidant, and Radical Scavenging Activities of 12 Plantago Species

2013 ◽  
Vol 61 (27) ◽  
pp. 6693-6702 ◽  
Author(s):  
Qin Zhou ◽  
Weiying Lu ◽  
Yuge Niu ◽  
Jie Liu ◽  
Xiaowei Zhang ◽  
...  
2020 ◽  
Vol 16 ◽  
Author(s):  
Bhim Bahadur Chaudhari ◽  
Alka Bali ◽  
Ajitesh Balaini

Background: NSAIDs are the most widely prescribed medications worldwide for their anti-inflammatory, antipyretic, and analgesic effects However, their chronic use can lead to several adverse drug events including GI toxicity. The selective COX-2 inhibitors developed as gastro-sparing NSAIDs also suffer from serious adverse effects which limit their efficacy. Objective: Local generation of reactive oxygen species is implicated in NSAID-mediated gastric ulceration and their combination with H2 antagonists like famotidine reduces the risk of ulcers. The objective of this work was to design and synthesize novel methanesulphonamido isoxazole derivatives by hybridizing the structural features of NSAIDs with those of antiulcer drugs (ranitidine, famotidine, etc.) to utilize a dual combination of anti-inflammatory activity and reducing (antioxidant) potential. Method: The designing process utilized three dimensional similarity studies and utilized an isoxazole core having a potential for anti-inflammatory as well as radical scavenging antioxidant activity. The compounds were assayed for their antiinflammatory activity in established in vivo models. The in vitro antioxidant activity was assessed in potassium ferricyanide reducing power (PFRAP) assay employing ascorbic acid as the standard drug. Results: Compounds (5, 6, 9 and 10) showed anti-inflammatory activity comparable to the standard drugs and were also found to be non-ulcerogenic at the test doses. Compounds 6-10 exhibited good antioxidant effect in the concentration range of 1.0-50.0 µmol/ml. The test compounds were also found to comply with the Lipinski rule suggesting good oral absorption. Conclusion: A new series of isoxazole based compounds is being reported with good anti-inflammatory activity coupled with antioxidant potential as gastro-sparing anti-inflammatory agents.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1545
Author(s):  
Hwa-Young Song ◽  
Da-Eun Jeong ◽  
Mina Lee

The aim of this study was to identify the optimal extraction conditions for leaves of Osmanthus fragrans var. aurantiacus. Inhibitory effects of various extracts on NO production were compared. Antioxidant evaluations for total phenol and flavonoid contents were carried out using various extracts of O. fragrans var. aurantiacus leaves obtained under optimal extraction conditions that showed the greatest effect on NO production. The optimal method for extracting O. fragrans var. aurantiacus leaves resulted in an extract named OP OFLE. OP OFLE showed DPPH and ABTS radical scavenging activities in a concentration-dependent manner. Phillyrin (PH) was isolated as a major compound from OP OFLE by HPLC/DAD analysis. OP OFLE and PH reduced inducible nitric oxide (iNOS) and cyclooxygenase (COX)-2 protein expression and downregulated proinflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α in LPS-stimulated RAW 264.7 and HT-29 cells. To determine the signal pathway involved in the inhibition of NO production, a Western blot analysis was performed. Results showed that OP OFLE decreased phosphorylation of extracellular regulated kinase (pERK) 1/2 and the expression of nuclear factor-kappa B (NF-κB). Our results suggest that extracts of O. fragrans var. aurantiacus leaves and its major components have biological activities such as antioxidative and anti-inflammatory properties.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 768
Author(s):  
Maddalena Sguizzato ◽  
Francesca Ferrara ◽  
Supandeep Singh Hallan ◽  
Anna Baldisserotto ◽  
Markus Drechsler ◽  
...  

Mangiferin is a natural glucosyl xanthone with antioxidant and anti-inflammatory activity, making it suitable for protection against cutaneous diseases. In this study ethosomes and transethosomes were designed as topical delivery systems for mangiferin. A preformulation study was conducted using different surfactants in association with phosphatidylcholine. Vesicle dimensional distribution was monitored by photon correlation spectroscopy, while antioxidant capacity and cytotoxicity were respectively assessed by free radical scavenging analysis and MTT on HaCaT keratinocytes. Selected nanosystems were further investigated by cryogenic transmission electron microscopy, while mangiferin entrapment capacity was evaluated by ultracentrifugation and HPLC. The diffusion kinetics of mangiferin from ethosomes and transethosomes evaluated by Franz cell was faster in the case of transethosomes. The suitability of mangiferin-containing nanovesicles in the treatment of skin disorders related to pollutants was investigated, evaluating, in vitro, the antioxidant and anti-inflammatory effect of ethosomes and transethosomes on human keratinocytes exposed to cigarette smoke as an oxidative and inflammatory challenger. The ability to induce an antioxidant response (HO-1) and anti-inflammatory status (IL-6 and NF-kB) was determined by RT-PCR and immunofluorescence. The data demonstrated the effectiveness of mangiferin loaded in nanosystems to protect cells from damage. Finally, to gain insight into the keratinocytes’ uptake of ethosome and transethosome, transmission electron microscopy analyses were conducted, showing that both nanosystems were able to pass intact within the cells.


Author(s):  
Rohanizah Abdul Rahim ◽  
Putri Ayu Jayusman ◽  
Norliza Muhammad ◽  
Norazlina Mohamed ◽  
Vuanghao Lim ◽  
...  

Oxidative stress and inflammation are two common risk factors of various life-threatening disease pathogenesis. In recent years, medicinal plants that possess antioxidant and anti-inflammatory activities were extensively studied for their potential role in treating and preventing diseases. Spilanthes acmella (S. acmella), which has been traditionally used to treat toothache in Malaysia, contains various active metabolites responsible for its anti-inflammatory, antiseptic, and anesthetic bioactivities. These bioactivities were attributed to bioactive compounds, such as phenolic, flavonoids, and alkamides. The review focused on the summarization of in vitro and in vivo experimental reports on the antioxidant and anti-inflammatory actions of S. acmella, as well as how they contributed to potential health benefits in lowering the risk of diseases that were related to oxidative stress. The molecular mechanism of S. acmella in reducing oxidative stress and inflammatory targets, such as inducible nitric oxide synthase (iNOS), transcription factors of the nuclear factor-κB family (NF-κB), cyclooxygenase-2 (COX-2), and mitogen-activated protein kinase (MAPK) signaling pathways were discussed. Besides, the antioxidant potential of S. acmella was measured by total phenolic content (TPC), total flavonid content (TFC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and superoxide anion radical scavenging (SOD) and thiobarbituric acid reactive substance (TBARS) assays. This review revealed that S. acmella might have a potential role as a reservoir of bioactive agents contributing to the observed antioxidant, anti-inflammatory, and health beneficial effects.


Author(s):  
Abhishek Chatterjee ◽  
Dileep Singh Baghel ◽  
Bimlesh Kumar ◽  
Saurabh Singh ◽  
Narendra Kumar Pandey ◽  
...  

Objective: The aims of the present investigation were to develop the herbal and/or herbomineral formulations of Hinguleswara rasa and to compare their anti-inflammatory and antioxidant activities, in vitro, with that of standard drug samples.Methods: This study was an interventional investigation in three samples: In the first sample, Hinguleswara rasa (HR1) was prepared as per methodology described in Rasatarangini using Shuddha Hingula (10 g), Shuddha Vatsanabha (10 g), and Pippali (10 g). In the second and third sample, respectively, Hinguleswara rasa was prepared by replacing Shuddha Hingula with Kajjali where Kajjali made from Hingulotha parada and Sodhita parada constitutes two varieties of Hinguleswara rasa, i.e. HR2 and HR3. In vitro antioxidant activity was studied using 2,2-diphenyl-1-picrylhydrazyl, and the absorbance was recorded at 517 nm. For evaluating the in vitro anti-inflammatory studies, the inhibition of albumin denaturation technique was performed.Results: The results showed that the formulation of Hinguleswara rasa has shown dose-dependent activity which was observed in 100 μg concentration. HR1, HR2, and HR3 showed 36.11, 17.22, and 16.11% radical scavenging activity.Conclusion: It could be concluded that the changes made in the formulations did not affect the in vitro anti-inflammatory and antioxidant effects of the herbomineral formulations.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ewelina Szliszka ◽  
Anna Mertas ◽  
Zenon P. Czuba ◽  
Wojciech Król

Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) is the main bioactive component of Brazilian green propolis. The aim of this study was to investigate the anti-inflammatory effect of artepillin C on LPS + IFN-γ- or PMA-stimulated RAW264.7 macrophages. The cell viability was evaluated by MTT and LDH assays. The radical scavenging ability was determined using DPPH•and ABTS•+. ROS and RNS generation was analyzed by chemiluminescence. NO concentration was detected by the Griess reaction. The release of various cytokines by activated RAW264.7 cells was measured in the culture supernatants using a multiplex bead array system based on xMAP technology. NF-κB activity was confirmed by the ELISA-based TransAM NF-κB kit. At the tested concentrations, the compound did not decrease the cell viability and did not cause the cytotoxicity. Artepillin C exerted strong antioxidant activity, significantly inhibited the production of ROS, RNS, NO, and cytokine IL-1β, IL-3, IL-4, IL-5, IL-9, IL-12p40, IL-13, IL-17, TNF-α, G-CSF, GM-CSF, MCP-1, MIP-1α, MIP-1β, RANTES, and KC, and markedly blocked NF-κB expression in stimulated RAW264.7 macrophages. Our findings provide new insights for understanding the mechanism involved in the anti-inflammatory effect of artepillin C and support the application of Brazilian green propolis in complementary and alternative medicine.


Sign in / Sign up

Export Citation Format

Share Document