Amino Acid Analysis, Possible Interference of Fats, Carbohydrates, and Salts in Amino Acid Determinations in Fish Meals, Fish Protein Concentrates, and Mixed Animal Feeds

1965 ◽  
Vol 13 (3) ◽  
pp. 266-268 ◽  
Author(s):  
Preston Smith ◽  
M. E. Ambrose ◽  
G. M. Knobl
2020 ◽  
Vol 36 (4) ◽  
pp. 49-58
Author(s):  
V.V. Kolpakova ◽  
R.V. Ulanova ◽  
L.V. Chumikina ◽  
V.V. Bessonov

The goal of the study was to develop a biotechnological process for the production of protein concentrates via bioconversion of pea flour and whey, a secondary product of starch manufacture. Standard and special methods were used to analyze the chemical and biochemical composition of protein concentrates (amino acid, carbohydrate, and fractional) of flour, whey and protein concentrates. It was established that pea flour contains 52.28-57.05% water-soluble nitrogenous substances, 23.04-25.50% salt-soluble, 2.94-4.69% alcohol-soluble compounds, 0-0.61% of soluble glutenine, 6.67-10.40% alkali-soluble glutenine and 5.96-10.86% insoluble sclerotic substances. A mathematical model and optimal parameters of the enzymatic extraction of pea protein with a yield of 65-70% were developed. Ultrasonic exposure increased the yield of nitrogenous substances by 23.16 ± 0.69%, compared with the control without ultrasound. The protein concentrate had a mass fraction of nitrogenous substances of 72.48 ± 0.41% (Nx6.25) and a complete amino acid composition. The microbial conversion by the Saccharomyces cerevisiae 121 and Geotrichum candidum 977 cultures of starch whey which remained after protein precipitation allowed us to obtain feed concentrates from biomass and culture liquid with a protein mass fraction of 61.68-70.48% (Nx6.25). Protein concentrates positively affected the vital signs of rats and their excretory products. A technological scheme was developed to test the complex pea grain and starch whey processing under pilot conditions. pea, protein concentrate, extracts, whey, bioconversion, Geotrichum candidum, Saccharomyces cerevisiae, chemical composition, amino acid composition


1991 ◽  
Vol 56 (4) ◽  
pp. 923-932
Author(s):  
Jana Stejskalová ◽  
Pavel Stopka ◽  
Zdeněk Pavlíček

The ESR spectra of peroxidase systems of methaemoglobin-ascorbic acid-hydrogen peroxide and methaemoglobin-haptoglobin complex-ascorbic acid-hydrogen peroxide have been measured in the acetate buffer of pH 4.5. For the system with methaemoglobin an asymmetrical signal with g ~ 2 has been observed which is interpreted as the perpendicular region of anisotropic spectrum of superoxide radical. On the other hand, for the system with methaemoglobin-haptoglobin complex the observed signal with g ~ 2 is symmetrical and is interpreted as a signal of delocalized electron. After realization of three repeatedly induced peroxidase processes the ESR signal of the perpendicular part of anisotropic spectrum of superoxide radical is distinctly diminished, whereas the signal of delocalized electron remains practically unchanged. An amino acid analysis of methaemoglobin along with results of the ESR measurements make it possible to derive a hypothesis about the role of haptoglobin in increasing of the peroxidase activity of methaemoglobin.


2017 ◽  
Vol 5 (28) ◽  
Author(s):  
Sara Jones ◽  
Raji Prasad ◽  
Anjana S. Nair ◽  
Sanjai Dharmaseelan ◽  
Remya Usha ◽  
...  

ABSTRACT We report here the whole-genome sequence of six clinical isolates of influenza A(H1N1)pdm09, isolated from Kerala, India. Amino acid analysis of all gene segments from the A(H1N1)pdm09 isolates obtained in 2014 and 2015 identified several new mutations compared to the 2009 A(H1N1) pandemic strain.


Sign in / Sign up

Export Citation Format

Share Document