α-Eleostearic Acid and Its Dihydroxy Derivative Are Major Apoptosis-Inducing Components of Bitter Gourd

2008 ◽  
Vol 56 (22) ◽  
pp. 10515-10520 ◽  
Author(s):  
Masuko Kobori ◽  
Mayumi Ohnishi-Kameyama ◽  
Yukari Akimoto ◽  
Chizuko Yukizaki ◽  
Mitsuru Yoshida

2021 ◽  
Vol 28 ◽  
pp. 100665
Author(s):  
Uma Prajapati ◽  
Ram Asrey ◽  
Eldho Varghese ◽  
A.K. Singh ◽  
Madan Pal Singh


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1084
Author(s):  
Hye Soo Lee ◽  
Sun Mi Lee ◽  
Sol Lee Park ◽  
Tae-Rim Choi ◽  
Hun-Suk Song ◽  
...  

Polyhydroxyalkanoates (PHAs) are attractive new bioplastics for the replacement of plastics derived from fossil fuels. With their biodegradable properties, they have also recently been applied to the medical field. As poly(3-hydroxybutyrate) produced by wild-type Ralstonia eutropha has limitations with regard to its physical properties, it is advantageous to synthesize co- or terpolymers with medium-chain-length monomers. In this study, tung oil, which has antioxidant activity due to its 80% α-eleostearic acid content, was used as a carbon source and terpolymer P(53 mol% 3-hydroxybytyrate-co-2 mol% 3-hydroxyvalerate-co-45 mol% 3-hydroxyhexanoate) with a high proportion of 3-hydroxyhexanoate was produced in R. eutropha Re2133/pCB81. To avail the benefits of α-eleostearic acid in the tung oil-based medium, we performed partial harvesting of PHA by using a mild water wash to recover PHA and residual tung oil on the PHA film. This resulted in a film coated with residual tung oil, showing antioxidant activity. Here, we report the first application of tung oil as a substrate for PHA production, introducing a high proportion of hydroxyhexanoate monomer into the terpolymer. Additionally, the residual tung oil was used as an antioxidant coating, resulting in the production of bioactive PHA, expanding the applicability to the medical field.



BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Junjie Cui ◽  
Jiazhu Peng ◽  
Jiaowen Cheng ◽  
Kailin Hu

Abstract Background The preferred choice for molecular marker development is identifying existing variation in populations through DNA sequencing. With the genome resources currently available for bitter gourd (Momordica charantia), it is now possible to detect genome-wide insertion-deletion (InDel) polymorphisms among bitter gourd populations, which guides the efficient development of InDel markers. Results Here, using bioinformatics technology, we detected 389,487 InDels from 61 Chinese bitter gourd accessions with an average density of approximately 1298 InDels/Mb. Then we developed a total of 2502 unique InDel primer pairs with a polymorphism information content (PIC) ≥0.6 distributed across the whole genome. Amplification of InDels in two bitter gourd lines ‘47–2–1-1-3’ and ‘04–17,’ indicated that the InDel markers were reliable and accurate. To highlight their utilization, the InDel markers were employed to construct a genetic map using 113 ‘47–2–1-1-3’ × ‘04–17’ F2 individuals. This InDel genetic map of bitter gourd consisted of 164 new InDel markers distributed on 15 linkage groups with a coverage of approximately half of the genome. Conclusions This is the first report on the development of genome-wide InDel markers for bitter gourd. The validation of the amplification and genetic map construction suggests that these unique InDel markers may enhance the efficiency of genetic studies and marker-assisted selection for bitter gourd.



Author(s):  
Rui Zang ◽  
Ying Zhao ◽  
Kangdi Guo ◽  
Kunqi Hong ◽  
Huijun Xi ◽  
...  

AbstractBitter gourd wilt caused by Fusarium oxysporum f. sp. momordicae (FOM) is a devastating crop disease in China. A total of 173 isolates characteristic of typical Fusarium oxysporum with abundant microconidia and macroconidia on white or ruby colonies were obtained from diseased plant tissues. BLASTn analysis of the rDNA-ITS of the isolates showed 99% identity with F. oxysporum species. Among the tested isolates, three were infectious toward tower gourd and five were pathogenic to bottle gourd. However, all of the isolates were pathogenic to bitter gourd. For genetic differences analysis, 40 ISSR primers were screened and 11 primers were used for ISSR-PCR amplification. In total, 127 loci were detected, of which 76 were polymorphic at a rate of 59.84%. POPGENE analysis showed that Nei’s gene diversity index (H) and Shannon’s information index (I) were 0.09 and 0.15, respectively, which indicated that the genetic diversity of the 173 isolates was low. The coefficient of gene differentiation (Gst = 0.33 > 0.15) indicated that genetic differentiation was mainly among populations. The strength of gene flow (Nm = 1.01 > 1.0) was weak, indicating that the population differentiation caused by gene drift was blocked to some degree. The dendrogram based on ISSR markers showed that the nine geographical populations were clustered into two groups at the threshold of genetic similarity coefficient of 0.96. The Shandong and Henan populations were clustered into Group I, while the Guangdong, Hainan, Guangxi, Fujian, Jiangxi, and Hubei populations constituted Group II. Results of the genetic variation analysis showed that the Hunan and Guangxi populations had the highest degree of genetic differentiation, while the Hubei population had the lowest genetic differentiation. Our findings enrich the knowledge of the genetic variation characteristics of FOM populations with the goal of developing effective disease-management programs and resistance breeding programs.





Author(s):  
Rizwana Batool ◽  
Iqra Yasmin ◽  
Iqra Munawar ◽  
Mahwash Aziz ◽  
Saima Tehseen ◽  
...  
Keyword(s):  


2020 ◽  
Vol 18 (3) ◽  
pp. 200-200
Author(s):  
Nadia Kausar ◽  
Zubaida Yousaf ◽  
Afifa Younas ◽  
Hafiza Sadia Ahmed ◽  
Madiha Rashid ◽  
...  


1962 ◽  
Vol 40 (11) ◽  
pp. 2078-2082 ◽  
Author(s):  
C. Y. Hopkins ◽  
Mary J. Chisholm

Seed oils were hydrolyzed under mild conditions and the major conjugated fatty acid of each oil was isolated and identified. In two families, species which were closely related botanically contained different but isomeric acids. Thus, in the Bignoniaceae, Jacaranda chelonia had cis trans,cis-8,10,12-octadecatrienoic acid as a major acid while Catalpa speciosa had trans,trans,cis-9,11,13-octadecatrienoic acid. In the Cucurbitaceae, Momordica charantia had the ordinary cis,trans,trans-9,11,13-octadecatrienoic (α-eleostearic) acid while M. balsamina had cis,trans,cis-9,11,13-octadecatrienoic (punicic) acid. M. balsamina is a new and convenient source of punicic acid. α-Eleostearic acid was identified as a major acid in examples of Valerianaceae and Rosaceae. Further proof was obtained that the fatty acid of Calendula officinalis (Compositae) is trans,trans,cis-8,10,12-octadecatrienoic acid.



Sign in / Sign up

Export Citation Format

Share Document