Potential Anticancer Agents.1LXVIII. Synthesis of Alkylating Agents Derived from 3-Amino-3-deoxy-D-allose

1962 ◽  
Vol 27 (1) ◽  
pp. 202-204 ◽  
Author(s):  
ELMER J. REIST ◽  
ROLAND R. SPENCER ◽  
LEON GOODMAN ◽  
B. R. BAKER
2020 ◽  
Vol 27 (35) ◽  
pp. 5970-6014 ◽  
Author(s):  
Md. Jawaid Akhtar ◽  
Mohammad Shahar Yar ◽  
Vinod Kumar Sharma ◽  
Ahsan Ahmed Khan ◽  
Zulphikar Ali ◽  
...  

This review presents the detailed account of factors leading to cancer and design strategy for the synthesis of benzimidazole derivatives as anticancer agents. The recent survey for cancer treatment in Cancer facts and figures 2017 American Chemical Society has shown progressive development in fighting cancer. Researchers all over the world in both developed and developing countries are in a continuous effort to tackle this serious concern. Benzimidazole and its derivatives showed a broad range of biological activities due to their resemblance with naturally occurring nitrogenous base i.e. purine. The review discussed benzimidazole derivatives showing anticancer properties through a different mechanism viz. intercalation, alkylating agents, topoisomerases, DHFR enzymes, and tubulin inhibitors. Benzimidazole derivatives act through a different mechanism and the substituents reported from the earlier and recent research articles are prerequisites for the synthesis of targeted based benzimidazole derivatives as anticancer agents. The review focuses on an easy comparison of the substituent essential for potency and selectivity through SAR presented in figures. This will further provide a better outlook or fulfills the challenges faced in the development of novel benzimidazole derivatives as anticancer.


2019 ◽  
Vol 19 (9) ◽  
pp. 1080-1102 ◽  
Author(s):  
Ghansham S. More ◽  
Asha B. Thomas ◽  
Sohan S. Chitlange ◽  
Rabindra K. Nanda ◽  
Rahul L. Gajbhiye

Background & Objective: :Nitrogen mustard derivatives form one of the major classes of anti-cancer agents in USFDA approved drugs list. These are polyfunctional alkylating agents which are distinguished by a unique mechanism of adduct formation with DNA involving cross-linking between guanine N-7 of one strand of DNA with the other. The generated cross-linking is irreversible and leads to cell apoptosis. Hence it is of great interest to explore this class of anticancer alkylating agents.Methods::An exhaustive list of reviews, research articles, patents, books, patient information leaflets, and orange book is presented and the contents related to nitrogen mustard anti-cancer agents have been reviewed. Attempts are made to present synthesis schemes in a simplified manner. The mechanism of action of the drugs and their side effects are also systematically elaborated.Results::This review provides a platform for understanding all aspects of such drugs right from synthesis to their mechanism of action and side effects, and lists USFDA approved ANDA players among alkylating anticancer agents in the current market.Conclusion: :Perusing this article, generic scientists will be able to access literature information in this domain easily to gain insight into the nitrogen mustard alkylating agents for further ANDA development. It will help the scientific and research community to continue their pursuit for the design of newer and novel heterocyclic alkylating agents of this class in the coming future.


1961 ◽  
Vol 26 (1) ◽  
pp. 148-152 ◽  
Author(s):  
W. A. SKINNER ◽  
ABELARDO P. MARTINEZ ◽  
HELEN F. GRAM ◽  
LEON GOODMAN ◽  
B. R. BAKER

2020 ◽  
Vol 21 (9) ◽  
pp. 3233 ◽  
Author(s):  
Karol Bukowski ◽  
Mateusz Kciuk ◽  
Renata Kontek

Cancer is one of the main causes of death worldwide. Despite the significant development of methods of cancer healing during the past decades, chemotherapy still remains the main method for cancer treatment. Depending on the mechanism of action, commonly used chemotherapeutic agents can be divided into several classes (antimetabolites, alkylating agents, mitotic spindle inhibitors, topoisomerase inhibitors, and others). Multidrug resistance (MDR) is responsible for over 90% of deaths in cancer patients receiving traditional chemotherapeutics or novel targeted drugs. The mechanisms of MDR include elevated metabolism of xenobiotics, enhanced efflux of drugs, growth factors, increased DNA repair capacity, and genetic factors (gene mutations, amplifications, and epigenetic alterations). Rapidly increasing numbers of biomedical studies are focused on designing chemotherapeutics that are able to evade or reverse MDR. The aim of this review is not only to demonstrate the latest data on the mechanisms of cellular resistance to anticancer agents currently used in clinical treatment but also to present the mechanisms of action of novel potential antitumor drugs which have been designed to overcome these resistance mechanisms. Better understanding of the mechanisms of MDR and targets of novel chemotherapy agents should provide guidance for future research concerning new effective strategies in cancer treatment.


2020 ◽  
Vol 12 (1) ◽  
pp. 19-35 ◽  
Author(s):  
Dimitrios Trafalis ◽  
Panagiotis Dalezis ◽  
Elena Geromichalou ◽  
Sofia Sagredou ◽  
Eleni Sflakidou ◽  
...  

Aim: Steroidal prodrugs of nitrogen mustards such as estramustine and prednimustine have proven effective anticancer agents in clinical use since the 1970s. In this work, we aimed to develop steroidal prodrugs of the novel nitrogen mustard POPAM-NH2. POPAM-NH2 is a melphalan analogue that was coupled with three different steroidal lactams. Methodology: The new conjugates were preclinically tested for anticancer activity against nine human and one rodent cancer experimental models, in vitro and in vivo. Results & conclusion: All the steroidal alkylators showed high antitumor activity, in vitro and in vivo, in the experimental systems tested. Moreover, these hybrid compounds showed by far superior anticancer activity compared with the alkylating agents, melphalan and POPAM-NH2.


2019 ◽  
Vol 47 (19) ◽  
pp. 10134-10150 ◽  
Author(s):  
George T Lountos ◽  
Xue Zhi Zhao ◽  
Evgeny Kiselev ◽  
Joseph E Tropea ◽  
Danielle Needle ◽  
...  

Abstract Tyrosyl DNA-phosphodiesterase I (TDP1) repairs type IB topoisomerase (TOP1) cleavage complexes generated by TOP1 inhibitors commonly used as anticancer agents. TDP1 also removes DNA 3′ end blocking lesions generated by chain-terminating nucleosides and alkylating agents, and base oxidation both in the nuclear and mitochondrial genomes. Combination therapy with TDP1 inhibitors is proposed to synergize with topoisomerase targeting drugs to enhance selectivity against cancer cells exhibiting deficiencies in parallel DNA repair pathways. A crystallographic fragment screening campaign against the catalytic domain of TDP1 was conducted to identify new lead compounds. Crystal structures revealed two fragments that bind to the TDP1 active site and exhibit inhibitory activity against TDP1. These fragments occupy a similar position in the TDP1 active site as seen in prior crystal structures of TDP1 with bound vanadate, a transition state mimic. Using structural insights into fragment binding, several fragment derivatives have been prepared and evaluated in biochemical assays. These results demonstrate that fragment-based methods can be a highly feasible approach toward the discovery of small-molecule chemical scaffolds to target TDP1, and for the first time, we provide co-crystal structures of small molecule inhibitors bound to TDP1, which could serve for the rational development of medicinal TDP1 inhibitors.


1961 ◽  
Vol 26 (3) ◽  
pp. 860-863 ◽  
Author(s):  
ABELARDO P. MARTINEZ ◽  
W. A. SKINNER ◽  
WILLIAM W. LEE ◽  
LEON GOODMAN ◽  
B. R. BAKER

Dose-Response ◽  
2009 ◽  
Vol 7 (2) ◽  
pp. dose-response.0 ◽  
Author(s):  
Marc A. Nascarella ◽  
Edward J. Stanek ◽  
George R. Hoffmann ◽  
Edward J. Calabrese

Quantitative features of dose responses were analyzed for 2,189 candidate anticancer agents in 13 strains of yeast ( Saccharomyces cerevisiae). The agents represent a diverse class of chemical compounds including mustards, other alkylating agents, and antimetabolites, inter alia. Previous analyses have shown that the responses below the toxic threshold were stimulatory and poorly predicted by a threshold dose-response model, while better explained by a hormetic dose-response model. We determined the quantitative features of the hormetic concentration-responses ( n = 4,548) using previously published entry and evaluative criteria. The quantitative features that are described are: (1) the width of the concentration range showing stimulation above 10% of the control (mean of 5-fold), (2) the maximum stimulation of the concentration-responses (mean of 27% above the control), and (3) the width from the maximum stimulation to the toxicological threshold (mean of 3.7-fold). These results show that 52.5% of the 2,189 chemicals evaluated display hormetic concentration-responses in at least one of the 13 yeast strains. Many chemicals showed hormesis in multiple strains, and 24 agents showed hormesis in all 13 strains. The data are compared to previously reported quantitative features of hormesis based on published literature.


Sign in / Sign up

Export Citation Format

Share Document