Kinetics of Metal-Affinity Driven Self-Assembly between Proteins or Peptides and CdSe−ZnS Quantum Dots

2007 ◽  
Vol 111 (31) ◽  
pp. 11528-11538 ◽  
Author(s):  
Kim E. Sapsford ◽  
Thomas Pons ◽  
Igor L. Medintz ◽  
Seiichiro Higashiya ◽  
Florence M. Brunel ◽  
...  
Langmuir ◽  
2012 ◽  
Vol 28 (21) ◽  
pp. 7962-7966 ◽  
Author(s):  
Jianhao Wang ◽  
Pengju Jiang ◽  
Zuoyan Han ◽  
Lin Qiu ◽  
Cheli Wang ◽  
...  

2010 ◽  
Vol 21 (7) ◽  
pp. 1160-1170 ◽  
Author(s):  
Allison M. Dennis ◽  
David C. Sotto ◽  
Bing C. Mei ◽  
Igor L. Medintz ◽  
Hedi Mattoussi ◽  
...  

2000 ◽  
Vol 648 ◽  
Author(s):  
M. Yakimov ◽  
V. Tokranov ◽  
S. Oktyabrsky

AbstractWe have studied the formation of InAs quantum dots (QDs) grown by molecular beam epitaxy on top of GaAs and 2 ML-thick AlAs layers in the temperature range from 350 to 500°C. In-situ reflection high energy electron diffraction (RHEED) patterns were recorded in real time during the growth and analyzed to characterize the 2D-to-3D transition on the surface, including QD formation, and ripening process. The kinetics of QD formation was studied using the InAs growth rates ranging from 0.01 to 1 ML/s and different ratios of As2/In fluxes. RHEED patterns and ex-situ atomic force microscopy images were analyzed to reveal the development of sizes and shapes of the single-layer and stacked QD ensembles. The critical InAs coverage for QD formation was shown to be consistently higher for dots grown on the AlAs overlayer than for those grown on GaAs surface. Self-assembly of multilayer QD stacks revealed the reduction of the critical thickness for dots formed in the upper layers.


2016 ◽  
Vol 16 (4) ◽  
pp. 4035-4039 ◽  
Author(s):  
Jianhao Wang ◽  
Jingyan Li ◽  
Yiwan Teng ◽  
Yanhua Bi ◽  
Wei Hu ◽  
...  

We present a molecular characterization of metal-affinity driven self-assembly between CdSe–ZnS quantum dots and a series of hexahistidine peptides with different charges. In particular, we utilized fluorescence coupled capillary electrophoresis to test the self-assembly process of quantum dots with peptides in solution. Four peptides with different charges can be efficiently separated by fluorescence coupled capillary electrophoresis. The migration time appeared to be influenced by the charges of the peptide. In addition, the kinetics of self-assembly process of quantum dots with one of the peptides manifested a bi-phasic kinetics followed by a saturating stage. This work revealed that there exist two types of binding sites on the surface of quantum dots for peptide 1: one type termed “high priority” binding site and a “low priority” site which is occupied after the first binding sites are fully occupied. The total self-assembly process finishes in solution within 80 s. Our work represents the systematic investigation of the details of self-assembly kinetics utilizing high-resolution fluorescence coupled capillary electrophoresis. The charge effect of peptide coating quantum dots provides a new way of preparing bioprobes.


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


Author(s):  
Prashant Malik ◽  
Neha Gulati ◽  
Raj Kaur Malik ◽  
Upendra Nagaich

Nanotechnology deal with the particle size in nanometers. Nanotechnology is ranging from extensions of conventional device physics to completely new approaches based upon molecular self assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale. In nanotechnology mainly three types of nanodevices are described: carbon nanotubes, quantum dots and dendrimers. It is a recent technique used as small size particles to treat many diseases like cancer, gene therapy and used as diagnostics. Nanotechnology used to formulate targeted, controlled and sustained drug delivery systems. Pharmaceutical nanotechnology embraces applications of nanoscience to pharmacy as nanomaterials and as devices like drug delivery, diagnostic, imaging and biosensor materials. Pharmaceutical nanotechnology has provided more fine tuned diagnosis and focused treatment of disease at a molecular level.    


Author(s):  
Zheng Xing ◽  
Kaituo Dong ◽  
Nick G Pavlopoulos ◽  
Yuexing Chen ◽  
Lilac Amirav

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Artur Tuktamyshev ◽  
Alexey Fedorov ◽  
Sergio Bietti ◽  
Stefano Vichi ◽  
Riccardo Tambone ◽  
...  

AbstractWe investigated the nucleation of Ga droplets on singular GaAs(111)A substrates in the view of their use as the seeds for the self-assembled droplet epitaxial quantum dots. A small critical cluster size of 1–2 atoms characterizes the droplet nucleation. Low values of the Hopkins-Skellam index (as low as 0.35) demonstrate a high degree of a spatial order of the droplet ensemble. Around $$350\,^{\circ }\hbox {C}$$ 350 ∘ C the droplet size distribution becomes bimodal. We attribute this observation to the interplay between the local environment and the limitation to the adatom surface diffusion introduced by the Ehrlich–Schwöbel barrier at the terrace edges.


2020 ◽  
Vol 21 (14) ◽  
pp. 5116
Author(s):  
Marco Mendozza ◽  
Arianna Balestri ◽  
Costanza Montis ◽  
Debora Berti

Lipid liquid crystalline mesophases, resulting from the self-assembly of polymorphic lipids in water, have been widely explored as biocompatible drug delivery systems. In this respect, non-lamellar structures are particularly attractive: they are characterized by complex 3D architectures, with the coexistence of hydrophobic and hydrophilic regions that can conveniently host drugs of different polarities. The fine tunability of the structural parameters is nontrivial, but of paramount relevance, in order to control the diffusive properties of encapsulated active principles and, ultimately, their pharmacokinetics and release. In this work, we investigate the reaction kinetics of p-nitrophenyl phosphate conversion into p-nitrophenol, catalysed by the enzyme Alkaline Phosphatase, upon alternative confinement of the substrate and of the enzyme into liquid crystalline mesophases of phytantriol/H2O containing variable amounts of an additive, sucrose stearate, able to swell the mesophase. A structural investigation through Small-Angle X-ray Scattering, revealed the possibility to finely control the structure/size of the mesophases with the amount of the included additive. A UV–vis spectroscopy study highlighted that the enzymatic reaction kinetics could be controlled by tuning the structural parameters of the mesophase, opening new perspectives for the exploitation of non-lamellar mesophases for confinement and controlled release of therapeutics.


Sign in / Sign up

Export Citation Format

Share Document