scholarly journals Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System

ACS Nano ◽  
2013 ◽  
Vol 7 (10) ◽  
pp. 9213-9222 ◽  
Author(s):  
Ya Yang ◽  
Hulin Zhang ◽  
Zong-Hong Lin ◽  
Yu Sheng Zhou ◽  
Qingshen Jing ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2951
Author(s):  
Yangming Liu ◽  
Jialin Liu ◽  
Lufeng Che

Triboelectric nanogenerators (TENGs) have excellent properties in harvesting tiny environmental energy and self-powered sensor systems with extensive application prospects. Here, we report a high sensitivity self-powered wind speed sensor based on triboelectric nanogenerators (TENGs). The sensor consists of the upper and lower two identical TENGs. The output electrical signal of each TENG can be used to detect wind speed so that we can make sure that the measurement is correct by two TENGs. We study the influence of different geometrical parameters on its sensitivity and then select a set of parameters with a relatively good output electrical signal. The sensitivity of the wind speed sensor with this set of parameters is 1.79 μA/(m/s) under a wind speed range from 15 m/s to 25 m/s. The sensor can light 50 LEDs at the wind speed of 15 m/s. This work not only advances the development of self-powered wind sensor systems but also promotes the application of wind speed sensing.


2021 ◽  
Vol 188 (8) ◽  
Author(s):  
Faezeh Ejehi ◽  
Raheleh Mohammadpour ◽  
Elham Asadian ◽  
Somayeh Fardindoost ◽  
Pezhman Sasanpour

Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 76
Author(s):  
Aleksey V. Tarasov ◽  
Ekaterina I. Khamzina ◽  
Maria A. Bukharinova ◽  
Natalia Yu. Stozhko

In contemporary bioanalysis, monitoring the antioxidant activity (AOA) of the human skin is used to assess stresses, nutrition, cosmetics, and certain skin diseases. Non-invasive methods for skin AOA monitoring have certain advantages over invasive methods, namely cost-effectiveness, lower labor intensity, reduced risk of infection, and obtaining results in the real-time mode. This study presents a new flexible potentiometric sensor system (FPSS) for non-invasive determination of the human skin AOA, which is based on flexible film electrodes (FFEs) and membrane containing a mediator ([Fe(CN)6]3–/4–). Low-cost available materials and scalable technologies were used for FFEs manufacturing. The indicator FFE was fabricated based on polyethylene terephthalate (PET) film and carbon veil (CV) by single-sided hot lamination. The reference FFE was fabricated based on PET film and silver paint by using screen printing, which was followed by the electrodeposition of precipitate containing a mixture of silver chloride and silver ferricyanide (SCSF). The three-electrode configuration of the FPSS, including two indicator FFEs (CV/PET) and one reference FFE (SCSF/Ag/PET), has been successfully used for measuring the skin AOA and evaluating the impact of phytocosmetic products. FPSS provides reproducible (RSD ≤ 7%) and accurate (recovery of antioxidants is almost 100%) results, which allows forecasting its broad applicability in human skin AOA monitoring as well as for evaluating the effectiveness of topically and orally applied antioxidants.


2021 ◽  
pp. 2100975
Author(s):  
Xiao Xiao ◽  
Xiao Xiao ◽  
Ardo Nashalian ◽  
Alberto Libanori ◽  
Yunsheng Fang ◽  
...  

Author(s):  
Araz Rajabi-Abhari ◽  
Jong-Nam Kim ◽  
Jeehee Lee ◽  
Rassoul Tabassian ◽  
Manmatha Mahato ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 337
Author(s):  
Navneet Soin ◽  
Sam J. Fishlock ◽  
Colin Kelsey ◽  
Suzanne Smith

The use of rapid point-of-care (PoC) diagnostics in conjunction with physiological signal monitoring has seen tremendous progress in their availability and uptake, particularly in low- and middle-income countries (LMICs). However, to truly overcome infrastructural and resource constraints, there is an urgent need for self-powered devices which can enable on-demand and/or continuous monitoring of patients. The past decade has seen the rapid rise of triboelectric nanogenerators (TENGs) as the choice for high-efficiency energy harvesting for developing self-powered systems as well as for use as sensors. This review provides an overview of the current state of the art of such wearable sensors and end-to-end solutions for physiological and biomarker monitoring. We further discuss the current constraints and bottlenecks of these devices and systems and provide an outlook on the development of TENG-enabled PoC/monitoring devices that could eventually meet criteria formulated specifically for use in LMICs.


2020 ◽  
Vol 30 (16) ◽  
pp. 1910723 ◽  
Author(s):  
Xingyi Dai ◽  
Long‐Biao Huang ◽  
Yuzhang Du ◽  
Jiancheng Han ◽  
Qiuqun Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document