scholarly journals Polymeric Nanoparticles for Nonviral Gene Therapy Extend Brain Tumor Survival in Vivo

ACS Nano ◽  
2015 ◽  
Vol 9 (2) ◽  
pp. 1236-1249 ◽  
Author(s):  
Antonella Mangraviti ◽  
Stephany Yi Tzeng ◽  
Kristen Lynn Kozielski ◽  
Yuan Wang ◽  
Yike Jin ◽  
...  
2013 ◽  
pp. 821 ◽  
Author(s):  
Jong-Sang Park ◽  
An ◽  
Nam ◽  
Choi ◽  
Bai ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii202-ii202
Author(s):  
John Will ◽  
Emily Thompson ◽  
Megan Harrigan ◽  
James Smyth ◽  
Zhi Sheng ◽  
...  

Abstract Glioblastoma (GBM) is the most common and aggressive primary adult brain tumor in the US. The current treatment regimen for GBM still retains an alarmingly poor prognosis, with median survival of only 14.6 months. Failure to generate more effective treatment strategies is due to the infiltrative nature of GBM tumor cells, which hinders complete surgical resection, and cellular heterogeneity within GBM tumors, with a sub-population of glioma stem cells (GSCs) resistant to irradiation treatment and chemotherapeutic agents including temozolomide. As a result, all treated GBM patients will experience tumor recurrence, highlighting the need for novel approaches in targeting such refractory tumor cell populations to successfully treat GBM tumors and prevent recurrence. Using super resolution localization microscopy, we have identified that increased interaction of connexin43 (Cx43) with microtubules in GSCs confers tumorigenic behavior to these cells. We employed a Cx43 mimetic peptide named JM2 (juxtamembrane 2) that encompasses the microtubule binding sequence of the Cx43 carboxy-terminus. This peptide drug efficiently and specifically disrupts the interaction of Cx43 with microtubules and limits GSC survival, proliferation, and migration, without affecting normal human astrocytes. Next, we implemented the therapeutic strategy of JM2 encapsulation within biodegradable polymeric nanoparticles (NPs) to reduce administration frequency and patient discomfort, and increase peptide stability and activity. We confirmed sustained release of JM2 from these poly(lactic-co-glycolic) acid biodegradable NPs, and JM2 bioactivity through disruption of Cx43 interaction with microtubules. Administration of JM2-NPs inhibits GSC-derived neurosphere formation in vitro and patient GBM-derived organoid growth ex vivo. Finally, using an orthotopic xenograft brain tumor mouse model, we demonstrate in vivo that JM2-NPs significantly decrease the number of GSCs within brain tumors, and inhibit the formation of highly invasive GBM tumors. Our findings on generation of JM2-NPs to target GSC survival lays the foundation for future clinical trials in newly diagnosed GBM patients.


2017 ◽  
Vol 28 (8) ◽  
pp. 681-689 ◽  
Author(s):  
Zhimin Wang ◽  
Raymond L. Benza ◽  
Lee Zourelias ◽  
Angela Sanguino ◽  
Ramaz Geguchadze ◽  
...  

2005 ◽  
Vol 102 (2) ◽  
pp. 328-335 ◽  
Author(s):  
Piotr Hadaczek ◽  
Hanna Mirek ◽  
Mitchel S. Berger ◽  
Krystof Bankiewicz

Object. Low efficacy of gene transfer, transient gene expression, and toxicity of viral vectors are the major hurdles in successful anticancer gene therapy. The authors conducted in vitro (U87MG cell line) and in vivo (xenograft, tumor-bearing rodent model) studies to address the stability of transduction by using the adenoassociated virus serotype-2 (AAV2)—thymidine kinase (TK) vector over time. Methods. Standard methods for cell growth and a ganciclovir (GCV) cytotoxicity assay were applied. The AAV2-TK was infused into implanted tumors in athymic rats via convection-enhanced delivery (CED). Thymidine kinase expression was evaluated through immunohistochemical analysis, and the distribution volumes of the transduced tumors were calculated. Twenty-four hours following the viral infusions, animals were treated with GCV (50 mg/kg intraperitoneally every day for 10 days; six rats) or phosphate-buffered saline (six rats). A rapid decrease in TK expression over time was observed both in vitro and in vivo. A large volume of the tumor (up to 39%) was transduced with AAV2-TK following CED. Administration of GCV resulted in limited therapeutic effects (survival of 25.8 compared with 21.3 days). Conclusions. Rapid elimination of TK expression from dividing tumor cells and focal transduction of the brain tumor were most likely responsible for the limited bystander effect in this approach. Immediate administration of GCV is crucial to assure maximal efficacy in the elimination of cancer cells. In addition, the complete or diffused transduction of a brain tumor with TK may be required for its total eradication.


2008 ◽  
Vol 149 (4) ◽  
pp. 153-159 ◽  
Author(s):  
Zsuzsanna Rácz ◽  
Péter Hamar

A genetikában új korszak kezdődött 17 éve, amikor a petúniában felfedezték a koszuppressziót. Később a koszuppressziót azonosították a növényekben és alacsonyabb rendű eukariótákban megfigyelt RNS-interferenciával (RNSi). Bár a növényekben ez ősi vírusellenes gazdaszervezeti védekezőmechanizmus, emlősökben az RNSi élettani szerepe még nincs teljesen tisztázva. Az RNSi-t rövid kettős szálú interferáló RNS-ek (short interfering RNA, siRNS) irányítják. A jelen cikkben összefoglaljuk az RNSi történetét és mechanizmusát, az siRNS-ek szerkezete és hatékonysága közötti összefüggéseket, a célsejtbe való bejuttatás virális és nem virális módjait. Az siRNS-ek klinikai alkalmazásának legfontosabb akadálya az in vivo alkalmazás. Bár a hidrodinamikus kezelés állatokban hatékony, embereknél nem alkalmazható. Lehetőséget jelent viszont a szervspecifikus katéterezés. A szintetizált siRNS-ek ismert mellékhatásait szintén tárgyaljuk. Bár a génterápia ezen új területén számos problémával kell szembenézni, a sikeres in vitro és in vivo kísérletek reményt jelentenek emberi betegségek siRNS-sel történő kezelésére.


2020 ◽  
Vol 20 (5) ◽  
pp. 321-332
Author(s):  
Yunbo Liu ◽  
Xu Zhang ◽  
Lin Yang

Adeno-associated virus (AAV) is a promising vector for in vivo gene therapy because of its excellent safety profile and ability to mediate stable gene expression in human subjects. However, there are still numerous challenges that need to be resolved before this gene delivery vehicle is used in clinical applications, such as the inability of AAV to effectively target specific tissues, preexisting neutralizing antibodies in human populations, and a limited AAV packaging capacity. Over the past two decades, much genetic modification work has been performed with the AAV capsid gene, resulting in a large number of variants with modified characteristics, rendering AAV a versatile vector for more efficient gene therapy applications for different genetic diseases.


2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


2020 ◽  
Vol 20 (11) ◽  
pp. 821-830
Author(s):  
Prasad Pofali ◽  
Adrita Mondal ◽  
Vaishali Londhe

Background: Current gene therapy vectors such as viral, non-viral, and bacterial vectors, which are used for cancer treatment, but there are certain safety concerns and stability issues of these conventional vectors. Exosomes are the vesicles of size 40-100 nm secreted from multivesicular bodies into the extracellular environment by most of the cell types in-vivo and in-vitro. As a natural nanocarrier, exosomes are immunologically inert, biocompatible, and can cross biological barriers like the blood-brain barrier, intestinal barrier, and placental barrier. Objective: This review focusses on the role of exosome as a carrier to efficiently deliver a gene for cancer treatment and diagnosis. The methods for loading of nucleic acids onto the exosomes, advantages of exosomes as a smart intercellular shuttle for gene delivery and therapeutic applications as a gene delivery vector for siRNA, miRNA and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and also the limitations of exosomes as a gene carrier are all reviewed in this article. Methods: Mostly, electroporation and chemical transfection are used to prepare gene loaded exosomes. Results: Exosome-mediated delivery is highly promising and advantageous in comparison to the current delivery methods for systemic gene therapy. Targeted exosomes, loaded with therapeutic nucleic acids, can efficiently promote the reduction of tumor proliferation without any adverse effects. Conclusion: In the near future, exosomes can become an efficient gene carrier for delivery and a biomarker for the diagnosis and treatment of cancer.


2015 ◽  
Vol 14 (8) ◽  
pp. 1041-1053 ◽  
Author(s):  
Resham Chhabra ◽  
Barbara Ruozi ◽  
Antonietta Vilella ◽  
Daniela Belletti ◽  
Katharina Mangus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document