Two-Dimensional Molecular Layers:  Interplay of H-Bonding and van der Waals Interactions in the Self-Assembly ofN,N‘-Dialkylsulfamides

2000 ◽  
Vol 2 (21) ◽  
pp. 3273-3275 ◽  
Author(s):  
Bing Gong ◽  
Chong Zheng ◽  
Ewa Skrzypczak-Jankun ◽  
Jin Zhu
2014 ◽  
Vol 50 (90) ◽  
pp. 13907-13909 ◽  
Author(s):  
Hugo Ascolani ◽  
Maarten W. van der Meijden ◽  
Lucila J. Cristina ◽  
J. Esteban Gayone ◽  
Richard M. Kellogg ◽  
...  

No H bonding for the amino group: van der Waals interactions guide the self-assembly of an aminohelicene on Cu(100) and Au(111).


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Sungjae Yoo ◽  
Jeongwon Kim ◽  
Sungwoo Choi ◽  
Doojae Park ◽  
Sungho Park

AbstractThe synthesis of highly complex two-dimensional (2D) metal nanoframes remains a great challenge. Synthetic strategies for preparing 2D metal nanoframes are few, and rational and systematic synthetic pathways to more complicated architectures have not yet been reported. Herein, we demonstrate a stepwise synthetic strategy for complex 2D metal nanoframes with a high degree of intricacy; the strategy leads to a variety of shapes, including rings, triangles, hexagons, and tripods with tailorable single or double frames in a single entity. These nanoframes of high homogeneity could be obtained through selective combination of four different chemical toolkits consisting of selective etching and deposition on certain facets, and concentric and/or eccentric regrowth by controlling the mismatches of lattice constants of metals. The resulting nanoframes were highly homogeneous in size and shape and had van der Waals interactions that maximized rim-to-rim contact, allowing them to uniquely self-assemble into large-area superstructures.


Nanoscale ◽  
2018 ◽  
Vol 10 (35) ◽  
pp. 16805-16811 ◽  
Author(s):  
Shiwei Cao ◽  
Yanhui Xing ◽  
Jun Han ◽  
Xin Luo ◽  
Wenxing Lv ◽  
...  

The van der Waals (vdW) heterostructure, made up of two dissimilar two-dimensional materials held together by van der Waals interactions, has excellent electronic and optoelectronic properties as it provides a superior interface quality without the lattice mismatch problem.


2018 ◽  
Vol 6 (31) ◽  
pp. 8405-8410 ◽  
Author(s):  
Furkan H. Isikgor ◽  
Chilla Damodara Reddy ◽  
Mengsha Li ◽  
Hikmet Coskun ◽  
Bichen Li ◽  
...  

2D hybrid perovskites are formed through the self assembly of polyaniline with PbI6 octahedra.


Author(s):  
Kostiantyn V. Domasevitch ◽  
Vira V. Ponomarova

In the structures of the title salts, poly[[μ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]rubidium], [Rb(C6HN8O8)] n , (1), and its isostructural caesium analogue [Cs(C6HN8O8) n , (2), two independent cations M1 and M2 (M = Rb, Cs) are situated on a crystallographic twofold axis and on a center of inversion, respectively. Mutual intermolecular hydrogen bonding between the conjugate 3,5-dinitopyrazole NH-donor and 3,5-dinitropyrazole N-acceptor sites of the anions [N...N = 2.785 (2) Å for (1) and 2.832 (3) Å for (2)] governs the self-assembly of the translation-related anions in a predictable fashion. Such one-component modular construction of the organic subtopology supports the utility of the crystal-engineering approach towards designing the structures of polynitro energetic materials. The anionic chains are further linked by multiple ion–dipole interactions involving the 12-coordinate cations bonded to two pyrazole N-atoms [Rb—N = 3.1285 (16), 3.2261 (16) Å; Cs—N = 3.369 (2), 3.401 (2) Å] and all of the eight nitro O-atoms [Rb—O = 2.8543 (15)–3.6985 (16) Å; Cs—O = 3.071 (2)–3.811 (2) Å]. The resulting ionic networks follow the CsCl topological archetype, with either metal or organic ions residing in an environment of eight counter-ions. Weak lone pair–π-hole interactions [pyrazole-N atoms to NO2 groups; N...N = 2.990 (3)–3.198 (3) Å] are also relevant to the packing. The Hirshfeld surfaces and percentage two-dimensional fingerprint plots for (1) and (2) are described.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1213 ◽  
Author(s):  
Gabriel Guerrero-Luna ◽  
María Guadalupe Hernández-Linares ◽  
Sylvain Bernès ◽  
Alan Carrasco-Carballo ◽  
Diana Montalvo-Guerrero ◽  
...  

A new series of bisteroidal esters was synthesized using a spacer group, sterols and sapogenins as substrates. Steroidal dimers were prepared in high yields employing diesters of terephthalic acid as linkages at the 3β, 3′β steroidal positions. In all attempts to crystallize bisteroids, it was observed that the compounds tended to self-organize in solution, which was detected when employing various solvent systems. The non-covalent interactions (van der Waals) of the steroidal moieties of this series of symmetrical bisteroids, the polarity of the solvents systems, and the different solubilities of the bisteroid aggregates, indeed induce the molecules to self-assemble into supramolecular structures with well-defined organization. Our results show that the self-assembled structures for the bisteroidal derivatives depend on the solvent system used: with hexane/EtOAc, membrane-shaped structures were obtained, while pure EtOAc afforded strand-shaped arrangements. In the CHCl3/CH3OH system, thin strands were formed, since van der Waals interactions are lowered in this system, as a consequence of the increased solubility of the bisteroids in CHCl3. Based on the characterization by SEM and XRD, we show evidence that the phenomenon of self-assembly of bisteroids occurs presenting different morphologies depending on the solvent used. The new steroidal dimer derivatives were characterized by NMR, TGA, DSC, SEM, and XRD. Finally, the molecular structure of one bisteroid was confirmed by single-crystal X-ray analysis.


Sign in / Sign up

Export Citation Format

Share Document