Role of the Sarcoplasmic Reticulum Ca2+-ATPase on Heat Production and Thermogenesis

2001 ◽  
Vol 21 (2) ◽  
pp. 113-137 ◽  
Author(s):  
Leopoldo de Meis

The sarcoplasmic reticulum of skeletal muscle retains a membrane bound Ca2+-ATPase which is able to interconvert different forms of energy. A part of the chemical energy released during ATP hydrolysis is converted into heat and in the bibliography it is assumed that the amount of heat produced during the hydrolysis of an ATP molecule is always the same, as if the energy released during ATP cleavage were divided in two non-interchangeable parts: one would be converted into heat, and the other used for Ca2+ transport. Data obtained in our laboratory during the past three years indicate that the amount of heat released during the hydrolysis of ATP may vary between 7 and 32 kcal/mol depending on whether or not a transmembrane Ca2+ gradient is formed across the sarcoplasmic reticulum membrane. Drugs such as heparin and dimethyl sulfoxide are able to modify the fraction of the chemical energy released during ATP hydrolysis which is used for Ca2+ transport and the fraction which is dissipated in the surrounding medium as heat.

2005 ◽  
Vol 25 (3-4) ◽  
pp. 181-190 ◽  
Author(s):  
Leopoldo de Meis ◽  
Ana Paula Arruda ◽  
Denise P. Carvalho

Enzymes are able to handle the energy derived from the hydrolysis of phosphate compounds in such a way as to determine the parcel that is used for work and the fraction that is converted into heat. The sarco/endoplasmic reticulum Ca2+-ATPases (SERCA) is a family of membrane-bound ATPases that are able to transport Ca2+ ion across the membrane using the chemical energy derived from ATP hydrolysis. The heat released during ATP hydrolysis by SERCA may vary from 10 up to 30 kcal/mol depending on the SERCA isoform used and on whether or not a Ca2+ gradient is formed across the membrane. Drugs such as heparin, dimethyl sulfoxide and the platelet-activating factor (PAF) are able to modify the fraction of the chemical energy released during ATP hydrolysis that is used for Ca2+ transport and the fraction that is dissipated in the surrounding medium as heat. The thyroid hormone 3,5,3′-triiodo l-thyronine (T3) regulates the expression and function of the thermogenic SERCA isoforms. Modulation of heat production by SERCA might be one of the mechanisms involved in the increased thermogenesis found in hyperthyroidism.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2852
Author(s):  
Paul A. Foster

Steroid sulphatase (STS), involved in the hydrolysis of steroid sulphates, plays an important role in the formation of both active oestrogens and androgens. Since these steroids significantly impact the proliferation of both oestrogen- and androgen-dependent cancers, many research groups over the past 30 years have designed and developed STS inhibitors. One of the main contributors to this field has been Prof. Barry Potter, previously at the University of Bath and now at the University of Oxford. Upon Prof. Potter’s imminent retirement, this review takes a look back at the work on STS inhibitors and their contribution to our understanding of sulphate biology and as potential therapeutic agents in hormone-dependent disease. A number of potent STS inhibitors have now been developed, one of which, Irosustat (STX64, 667Coumate, BN83495), remains the only one to have completed phase I/II clinical trials against numerous indications (breast, prostate, endometrial). These studies have provided new insights into the origins of androgens and oestrogens in women and men. In addition to the therapeutic role of STS inhibition in breast and prostate cancer, there is now good evidence to suggest they may also provide benefits in patients with colorectal and ovarian cancer, and in treating endometriosis. To explore the potential of STS inhibitors further, a number of second- and third-generation inhibitors have been developed, together with single molecules that possess aromatase–STS inhibitory properties. The further development of potent STS inhibitors will allow their potential therapeutic value to be explored in a variety of hormone-dependent cancers and possibly other non-oncological conditions.


1970 ◽  
Vol 120 (1) ◽  
pp. 15-24 ◽  
Author(s):  
P. S. G. Goldfarb ◽  
R. Rodnight

1. The intrinsic Na+, K+, Mg2+ and Ca2+ contents of a preparation of membrane fragments from ox brain were determined by emission flame photometry. 2. Centrifugal washing of the preparation with imidazole-buffered EDTA solutions decreased the bound Na+ from 90±20 to 24±12, the bound K+ from 27±3 to 7±2, the bound Mg2+ from 20±2 to 3±1 and the bound calcium from 8±1 to <1nmol/mg of protein. 3. The activities of the Na++K++Mg2+-stimulated adenosine triphosphatase and the Na+-dependent reaction forming bound phosphate were compared in the unwashed and washed preparations at an ATP concentration of 2.5μm (ATP/protein ratio 12.5pmol/μg). 4. The Na+-dependent hydrolysis of ATP as well as the plateau concentration of bound phosphate and the rate of dephosphorylation were decreased in the washed preparation. The time-course of formation and decline of bound phosphate was fully restored by the addition of 2.5μm-magnesium chloride and 2μm-potassium chloride. Addition of 2.5μm-magnesium chloride alone fully restored the plateau concentration of bound phosphate, but the rate of dephosphorylation was only slightly increased. Na+-dependent ATP hydrolysis was partly restored with 2.5μm-magnesium chloride; addition of K+ in the range 2–10μm-potassium chloride then further restored hydrolysis but not to the control rate. 5. Pretreatment of the washed preparation at 0°C with 0.5nmol of K+/mg of protein so that the final added K+ in the reaction mixture was 0.1μm restored the Na+-dependent hydrolysis of ATP and the time-course of the reaction forming bound phosphate. 6. The binding of [42K]potassium chloride by the washed membrane preparation was examined. Binding in a solution containing 10nmol of K+/mg of protein was linear over a period of 20min and was inhibited by Na+. Half-maximal inhibition of 42K+-binding required a 100-fold excess of sodium chloride. 7. It was concluded (a) that a significant fraction of the apparent Na+-dependent hydrolysis of ATP observed in the unwashed preparation is due to activation by bound K+ and Mg2+ of the Na++K++Mg2+-stimulated adenosine triphosphatase system and (b) that the enzyme system is able to bind K+ from a solution of 0.5μm-potassium chloride.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ellen Menkhorst ◽  
Nandor Gabor Than ◽  
Udo Jeschke ◽  
Gabriela Barrientos ◽  
Laszlo Szereday ◽  
...  

Lectin-glycan interactions, in particular those mediated by the galectin family, regulate many processes required for a successful pregnancy. Over the past decades, increasing evidence gathered from in vitro and in vivo experiments indicate that members of the galectin family specifically bind to both intracellular and membrane bound carbohydrate ligands regulating angiogenesis, immune-cell adaptations required to tolerate the fetal semi-allograft and mammalian embryogenesis. Therefore, galectins play important roles in fetal development and placentation contributing to maternal and fetal health. This review discusses the expression and role of galectins during the course of pregnancy, with an emphasis on maternal immune adaptions and galectin-glycan interactions uncovered in the recent years. In addition, we summarize the galectin fingerprints associated with pathological gestation with particular focus on preeclampsia.


1984 ◽  
Vol 99 (2) ◽  
pp. 734-741 ◽  
Author(s):  
W A Braell ◽  
D M Schlossman ◽  
S L Schmid ◽  
J E Rothman

ATP hydrolysis was used to power the enzymatic release of clathrin from coated vesicles. The 70,000-mol-wt protein, purified on the basis of its ATP-dependent ability to disassemble clathrin cages, was found to possess a clathrin-dependent ATPase activity. Hydrolysis was specific for ATP; neither dATP nor other ribonucleotide triphosphates would either substitute for ATP or inhibit the hydrolysis of ATP in the presence of clathrin cages. The ATPase activity is elicited by clathrin in the form of assembled cages, but not by clathrin trimers, the product of cage disassembly. The 70,000-mol-wt polypeptide, but not clathrin, was labeled by ATP in photochemical cross-linking, indicating that the hydrolytic site for ATP resides on the uncoating protein. Conditions of low pH or high magnesium concentration uncouple ATP hydrolysis from clathrin release, as ATP is hydrolyzed although essentially no clathrin is released. This suggests that the recognition event triggering clathrin-dependent ATP hydrolysis occurs in the absence of clathrin release, and presumably precedes such release.


1974 ◽  
Vol 52 (11) ◽  
pp. 1053-1066 ◽  
Author(s):  
Sailen Mookerjea ◽  
James W. M. Yung

Addition of lysolecithin caused very marked activation of UDP-galactose:glycoprotein galactosyltransferase in rat liver microsomes and in Golgi-rich membranes. Lysolecithin activated galactosyltransferase when the enzyme was assayed both with endogenous acceptor and with exogenous proteins or monosaccharides as acceptors. Lactose synthetase activity in presence of α-lactalbumin was also stimulated by lysolecithin. Lecithin, lysophosphatidylethanolamine, lysophosphatidic acid, and glycerophosphorylcholine did not activate the enzyme, suggesting that both fatty acyl and phosphorylcholine groups of the lysolecithin molecule are required for the observed activation. The degree of activation was about the same when myristoyl-, palmitoyl-, oleoyl-, or stearoyllysolecithin were tested. The activation by lysolecithin was observed well within the physiological concentration of the lipid in the liver cell. Saturating amounts of Triton masked the effect of lysolecithin.Brief preincubation with phospholipase A activated the enzyme and generated lysolecithin in the membranes. Triton and lysolecithin activated the enzyme without any lag time, whereas phospholipase A activation was dependent on preincubation and also on an alkaline pH favorable for the hydrolysis of phospholipid. EDTA blocked the activation effect of phospholipase A but had no effect on activation by lysolecithin. Albumin and cholesterol opposed the effects of lysolecithin and phospholipase A on the enzyme. Two successive incubations of the microsomes with lysolecithin caused considerable release of the enzyme into the soluble fraction. The role of lysolecithin in the activation of the enzyme is probably related to the solubilization of the membrane and consequent enhanced interaction of the enzyme with substrate. Lysolecithin also activated N-acetylglucosaminyl- and sialyltransferase activities in microsomes. A possible role of lysolecithin is indicated in the regulation of glycosylation reactions in mammalian system.


2010 ◽  
Vol 38 (2) ◽  
pp. 438-442 ◽  
Author(s):  
Andrew D. Bates ◽  
Anthony Maxwell

Type II DNA topoisomerases catalyse changes in DNA topology in reactions coupled to the hydrolysis of ATP. In the case of DNA gyrase, which can introduce supercoils into DNA, the requirement for free energy is clear. However, the non-supercoiling type II enzymes carry out reactions that are apparently energetically favourable, so their requirement for ATP hydrolysis is not so obvious. It has been shown that many of these enzymes (the type IIA family) can simplify the topology of their DNA substrates to a level beyond that expected at equilibrium. Although this seems to explain their usage of ATP, we show that the free energies involved in topology simplification are very small (<0.2% of that available from ATP) and we argue that topology simplification may simply be an evolutionary relic.


2020 ◽  
Vol 11 ◽  
Author(s):  
Saira Afzal ◽  
Mariya al-Rashida ◽  
Abdul Hameed ◽  
Julie Pelletier ◽  
Jean Sévigny ◽  
...  

Ectonucleoside triphosphate diphosphohydrolases (NTPDases) are ectoenzymes that play an important role in the hydrolysis of nucleoside triphosphate and diphosphate to nucleoside monophosphate. NTPDase1, -2, -3 and -8 are the membrane bound members of this enzyme family that are responsible for regulating the levels of nucleotides in extracellular environment. However, the pathophysiological functions of these enzymes are not fully understood due to lack of potent and selective NTPDase inhibitors. Herein, a series of oxoindolin hydrazine carbothioamide derivatives is synthesized and screened for NTPDase inhibitory activity. Four compounds were identified as selective inhibitors of h-NTPDase1 having IC50 values in lower micromolar range, these include compounds 8b (IC50 = 0.29 ± 0.02 µM), 8e (IC50 = 0.15 ± 0.009 µM), 8f (IC50 = 0.24 ± 0.01 µM) and 8l (IC50 = 0.30 ± 0.03 µM). Similarly, compound 8k (IC50 = 0.16 ± 0.01 µM) was found to be a selective h-NTPDase2 inhibitor. In case of h-NTPDase3, most potent inhibitors were compounds 8c (IC50 = 0.19 ± 0.02 µM) and 8m (IC50 = 0.38 ± 0.03 µM). Since NTPDase3 has been reported to be associated with the regulation of insulin secretion, we evaluated our synthesized NTPDase3 inhibitors for their ability to stimulate insulin secretion in isolated mice islets. Promising results were obtained showing that compound 8m potently stimulated insulin secretion without affecting the NTPDase3 gene expression. Molecular docking studies of the most potent compounds were also carried out to rationalize binding site interactions. Hence, these compounds are useful tools to study the role of NTPDase3 in insulin secretion.


Sign in / Sign up

Export Citation Format

Share Document