Age-Related Effects on ERP and Oscillatory EEG-Dynamics in a 2-Back Task

2014 ◽  
Vol 28 (3) ◽  
pp. 162-177 ◽  
Author(s):  
Patrick D. Gajewski ◽  
Michael Falkenstein

It is well known that working memory is one of the most vulnerable cognitive functions in elderly. However, little is known about the neuronal underpinnings and temporal dynamics of working memory mechanisms in healthy aging which are necessary to understand the age-related changes. To this end, 36 young and 36 old healthy individuals performed a 2-back task and a 0-back control task, while the electroencephalogram (EEG) was recorded. Participants were instructed to press a response key whenever a target appeared and not to respond in case of nontargets. Expectedly, older participants showed considerably slower RTs and significantly higher rates of omitted targets and false alarms than young participants in the 2-back task, whereas no age-group difference in detection rate was found in the 0-back task. From the EEG event-related potentials as well as time-frequency plots were computed. The ERPs showed a general delay of the frontocentral N2, and an attenuation and delay of both the P3a and P3b in older versus younger adults. Importantly, the frontal P3a was reduced in older adults in the 2-back task. Time-frequency decomposition revealed consistently lower power in frontal theta (6 Hz) and parietal alpha (9–11 Hz) frequency range in older versus younger adults whereas no age-related differences were found in the delta frequency range. Task unspecific reduction of posterior alpha in elderly was paralleled by a reduction of the P3b. In contrast, the older adults had a strongly reduced frontal theta power in the 2-back task, which parallels the P3a reduction in the ERPs. The widespread reduction of alpha may indicate that older adults needed to recruit more attentional resources for successful task performance, whereas reduced frontal theta may indicate that older adults are less able to recruit frontal resources related to top-down control with increasing task demands. This suggests a less efficient fronto-parietal network synchronicity in older individuals that leads to deficits in identification and maintenance of task relevant stimuli.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Seçkin Arslan ◽  
Katerina Palasis ◽  
Fanny Meunier

Abstract This study reports on an event-related potentials experiment to uncover whether per-millisecond electrophysiological brain activity and analogous behavioural responses are age-sensitive when comprehending anaphoric (referent-first) and cataphoric (pronoun-first) pronouns. Two groups of French speakers were recruited (young n = 18; aged 19–35 and older adults n = 15; aged 57–88) to read sentences where the anaphoric/cataphoric pronouns and their potential referents either matched or mismatched in gender. Our findings indicate that (1) the older adults were not less accurate or slower in their behavioural responses to the mismatches than the younger adults, (2) both anaphoric and cataphoric conditions evoked a central/parietally distributed P600 component with similar timing and amplitude in both the groups. Importantly, mean amplitudes of the P600 effect were modulated by verbal short-term memory span in the older adults but not in the younger adults, (3) nevertheless, the older but not the younger adults displayed an additional anterior negativity emerging on the frontal regions in response to the anaphoric mismatches. These results suggest that pronoun processing is resilient in healthy ageing individuals, but that functional recruitment of additional brain regions, evidenced with the anterior negativity, compensates for increased processing demands in the older adults’ anaphora processing.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2323
Author(s):  
Elizabeth R. Paitel ◽  
Kristy A. Nielson

Aging is accompanied by frontal lobe and non-dominant hemisphere recruitment that supports executive functioning, such as inhibitory control, which is crucial to all cognitive functions. However, the spatio-temporal sequence of processing underlying successful inhibition and how it changes with age is understudied. Thus, we capitalized on the temporal precision of event-related potentials (ERPs) to assess the functional lateralization of N200 (conflict monitoring) and P300 (inhibitory performance evaluation) in young and healthy older adults during comparably performed successful stop-signal inhibition. We additionally used temporal principal components analysis (PCA) to further interrogate the continuous spatio-temporal dynamics underlying N200 and P300 activation for each group. Young adults demonstrated left hemisphere-dominant N200, while older adults demonstrated overall larger amplitudes and right hemisphere dominance. N200 activation was explained by a single PCA factor in both age groups, but with a more anterior scalp distribution in older adults. The P300 amplitudes were larger in the right hemisphere in young, but bilateral in old, with old larger than young in the left hemisphere. P300 was also explained by a single factor in young adults but by two factors in older adults, including distinct parieto-occipital and anterior activation. These findings highlight the differential functional asymmetries of conflict monitoring (N200) and inhibitory evaluation and adaptation (P300) processes and further illuminate unique age-related spatio-temporal recruitment patterns. Older adults demonstrated lateralized recruitment during conflict processing and bilateral recruitment during evaluation and adaptation, with anterior recruitment common to both processes. These fine-grained analyses are critically important for more precise understanding of age-related compensatory activation.


Author(s):  
Elizabeth R Paitel ◽  
Kristy A Nielson

Aging is accompanied by frontal lobe and non-dominant hemisphere recruitment that supports executive functioning, such as inhibitory control, which is crucial to all cognitive functions. Yet, the spatio-temporal sequence of processing underlying successful inhibition and how it changes with age is understudied. Thus, we assessed N200 (conflict monitoring) and P300 (response inhibition, performance evaluation) event-related potentials (ERPs) in young and healthy older adults during comparably performed successful stop-signal inhibition. We additionally interrogated the continuous spatio-temporal dynamics of N200- and P300-related activation within each group. Young adults had left hemisphere dominant N200, while older adults had overall larger amplitudes and right hemisphere dominance. N200 activation was biphasic in both groups but differed in scalp topography. P300 also differed, with larger right amplitudes in young, but bilateral amplitudes in old, with old larger than young in the left hemisphere. P300 was characterized by an early parieto-occipital peak in both groups, followed by a parietal slow wave only in older adults. A temporally similar but topographically different final wave followed in both groups that showed anterior recruitment in older adults. These findings illuminate differential age-related spatio-temporal recruitment patterns for conflict monitoring and response inhibition that are critically important for understanding age-related compensatory activation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haining Liu ◽  
Yanli Liu ◽  
Xianling Dong ◽  
Haihong Liu ◽  
Buxin Han

Studies investigating age-related positivity effects during facial emotion processing have yielded contradictory results. The present study aimed to elucidate the mechanisms of cognitive control during attentional processing of emotional faces among older adults. We used go/no-go detection tasks combined with event-related potentials and source localization to examine the effects of response inhibition on age-related positivity effects. Data were obtained from 23 older and 23 younger healthy participants. Behavioral results showed that the discriminability index (d') of older adults on fear trials was significantly greater than that of younger adults [t(44)=2.37, p=0.024, Cohen’s d=0.70], whereas an opposite pattern was found in happy trials [t(44)=2.56, p=0.014, Cohen’s d=0.75]. The electroencephalography results on the amplitude of the N170 at the left electrode positions showed that the fear-neutral face pairs were larger than the happy-neutral ones for the younger adults [t(22)=2.32, p=0.030, Cohen’s d=0.48]; the older group’s right hemisphere presented similar tendency, although the results were not statistically significant [t(22)=1.97, p=0.061, Cohen’s d=0.41]. Further, the brain activity of the two hemispheres in older adults showed asymmetrical decrement. Our study demonstrated that the age-related “positivity effect” was not observed owing to the depletion of available cognitive resources at the early attentional stage. Moreover, bilateral activation of the two hemispheres may be important signals of normal aging.


2019 ◽  
Vol 40 (6) ◽  
pp. 1481-1494
Author(s):  
Zude Zhu ◽  
Suiping Wang ◽  
Nannan Xu ◽  
Mengya Li ◽  
Yiming Yang

AbstractSemantic integration and working memory both decline with age. However, it remains unclear whether the semantic integration decline is independent of working memory decline or whether it can be solely explained by the latter factor. In this event-related potentials experiment, 43 younger adults and 43 cognitively healthy older adults read semantically congruent and incongruent sentences. After controlling for working memory, behavioral accuracy was significantly lower in the older adults than in the younger adults. In addition, the semantic integration related N400 effect (incongruent vs. congruent) for correct trials was apparent in the whole brain in the younger adults but restricted to the posterior region in the older adults. The results clarify the relationship between working memory and semantic integration, and clearly demonstrate that semantic integration decline is independent of working memory decline during aging.


2021 ◽  
Vol 17 (1) ◽  
pp. 58-69
Author(s):  
Hanna Chainay ◽  
Clémence Joubert ◽  
Stéphanie Massol

Cognitive and physical training have been shown to be effective in improving older adults’ cognition. However, it is not yet clear whether combined cognitive and physical training offers an advantage compared to cognitive training alone. Twenty-two older adults performed cognitive or combined cognitive and physical training in order to compare their effects on working memory event-related potentials (ERPs) and on working memory and executive function performance. Before and after eight weeks of training, performance in Plus Minus, Flanker, Updated Span, and Complex Span tasks was measured, and ERPs were registered during performance of an n-back task (0-back, 2-back, and 3-back). Post-training behavioural improvement was observed in Updated Span, Complex Span, and n-back tasks. During the n-back task, the N2/P3 complex was modulated by training, with a decrease in N2 amplitude and an increase in P3 amplitude in the post-training session compared to the pretraining session. These changes in ERP components suggest that both types of training potentially reduce the need for attentional control to perform the tasks correctly and increase working memory capacity. Thus, based on our data, no conclusion can be reached on the direct advantage of combined training, either at behavioural or at neural level. However, the present study might suggest an indirect advantage of such a combined training, because the cognitive benefit was found to be highly similar in both types of training. Using combined cognitive and physical training may produce a potential improvement in general fitness and an increased appeal of training.


2008 ◽  
Vol 20 (12) ◽  
pp. 2250-2262 ◽  
Author(s):  
William J. Tays ◽  
Jane Dywan ◽  
Karen J. Mathewson ◽  
Sidney J. Segalowitz

There is growing consensus that a decline in attentional control is a core aspect of cognitive aging. We used event-related potentials to examine the time course of attentional control in older and younger adults as they attempted to resolve familiarity-based and response-based interference during a working memory task. Accuracy was high for both groups but their neural response to targets and to distracters was markedly different. Young adults' early target selection was evident by 300 msec in a differentiated P3a and they responded to interference by generating a medial frontal negativity (MFN) to distracters by 450 msec that was largest when the need for interference resolution was greatest. Dipole source analyses revealed a temporal coactivation of the inferior frontal and anterior cingulate cortex in younger adults, suggesting that these regions may interact during interference resolution. Older adults did not show the early target-selective P3a effect and failed to subsequently produce the MFN in response to distracting stimuli. In fact, older adults showed a large frontal positivity in place of the MFN but, rather than serve a compensatory role, this frontal activation was associated with poorer behavioral performance. These data suggest that aging interferes with a dynamic interplay of early target selection followed by later suppression of distracter-related neural activity—a process central to the efficient control of attention.


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


2015 ◽  
Vol 27 (3) ◽  
pp. 492-508 ◽  
Author(s):  
Nicholas E. Myers ◽  
Lena Walther ◽  
George Wallis ◽  
Mark G. Stokes ◽  
Anna C. Nobre

Working memory (WM) is strongly influenced by attention. In visual WM tasks, recall performance can be improved by an attention-guiding cue presented before encoding (precue) or during maintenance (retrocue). Although precues and retrocues recruit a similar frontoparietal control network, the two are likely to exhibit some processing differences, because precues invite anticipation of upcoming information whereas retrocues may guide prioritization, protection, and selection of information already in mind. Here we explored the behavioral and electrophysiological differences between precueing and retrocueing in a new visual WM task designed to permit a direct comparison between cueing conditions. We found marked differences in ERP profiles between the precue and retrocue conditions. In line with precues primarily generating an anticipatory shift of attention toward the location of an upcoming item, we found a robust lateralization in late cue-evoked potentials associated with target anticipation. Retrocues elicited a different pattern of ERPs that was compatible with an early selection mechanism, but not with stimulus anticipation. In contrast to the distinct ERP patterns, alpha-band (8–14 Hz) lateralization was indistinguishable between cue types (reflecting, in both conditions, the location of the cued item). We speculate that, whereas alpha-band lateralization after a precue is likely to enable anticipatory attention, lateralization after a retrocue may instead enable the controlled spatiotopic access to recently encoded visual information.


2019 ◽  
Vol 45 (2) ◽  
pp. 120-134 ◽  
Author(s):  
Paul Verhaeghen ◽  
Shriradha Geigerman ◽  
Haoxiang Yang ◽  
Alejandra C. Montoya ◽  
Dobromir Rahnev

Sign in / Sign up

Export Citation Format

Share Document