scholarly journals Risk sensitivity in a motor task with speed-accuracy trade-off

2011 ◽  
Vol 105 (6) ◽  
pp. 2668-2674 ◽  
Author(s):  
Arne J. Nagengast ◽  
Daniel A. Braun ◽  
Daniel M. Wolpert

When a racing driver steers a car around a sharp bend, there is a trade-off between speed and accuracy, in that high speed can lead to a skid whereas a low speed increases lap time, both of which can adversely affect the driver's payoff function. While speed-accuracy trade-offs have been studied extensively, their susceptibility to risk sensitivity is much less understood, since most theories of motor control are risk neutral with respect to payoff, i.e., they only consider mean payoffs and ignore payoff variability. Here we investigate how individual risk attitudes impact a motor task that involves such a speed-accuracy trade-off. We designed an experiment where a target had to be hit and the reward (given in points) increased as a function of both subjects' endpoint accuracy and endpoint velocity. As faster movements lead to poorer endpoint accuracy, the variance of the reward increased for higher velocities. We tested subjects on two reward conditions that had the same mean reward but differed in the variance of the reward. A risk-neutral account predicts that subjects should only maximize the mean reward and hence perform identically in the two conditions. In contrast, we found that some (risk-averse) subjects chose to move with lower velocities and other (risk-seeking) subjects with higher velocities in the condition with higher reward variance (risk). This behavior is suboptimal with regard to maximizing the mean number of points but is in accordance with a risk-sensitive account of movement selection. Our study suggests that individual risk sensitivity is an important factor in motor tasks with speed-accuracy trade-offs.

2012 ◽  
Vol 11 (3) ◽  
pp. 118-126 ◽  
Author(s):  
Olive Emil Wetter ◽  
Jürgen Wegge ◽  
Klaus Jonas ◽  
Klaus-Helmut Schmidt

In most work contexts, several performance goals coexist, and conflicts between them and trade-offs can occur. Our paper is the first to contrast a dual goal for speed and accuracy with a single goal for speed on the same task. The Sternberg paradigm (Experiment 1, n = 57) and the d2 test (Experiment 2, n = 19) were used as performance tasks. Speed measures and errors revealed in both experiments that dual as well as single goals increase performance by enhancing memory scanning. However, the single speed goal triggered a speed-accuracy trade-off, favoring speed over accuracy, whereas this was not the case with the dual goal. In difficult trials, dual goals slowed down scanning processes again so that errors could be prevented. This new finding is particularly relevant for security domains, where both aspects have to be managed simultaneously.


2019 ◽  
Vol 9 (4) ◽  
pp. 41 ◽  
Author(s):  
Wu ◽  
Struys ◽  
Lochtman

The effect of bilingualism on inhibition control is increasingly under ongoing exploration. The present study primarily investigated the effect of within bilingual factors (i.e., dominance types of Uyghur-Chinese bilinguals) on a Stimulus-Stimulus task (Flanker) and a Stimulus-Response task (Simon). We also compared the bilinguals' performance on each type of cognitive control task in respect to a possible trade-off between speed and accuracy. The findings showed no explicit differences on performance in response time or accuracy among balanced, L1-dominant and L2-dominant bilinguals but balanced bilinguals demonstrated a significant speed-accuracy trade-off in the overall context switching between non-conflict and conflict trials in both cognitive control tasks where monitoring process is highly demanded. Additionally, all bilinguals across all language dominance types showed a trade-off strategy in inhibition during a Stimulus-Stimulus conflict (flanker task). This evidence indicates that the differences of within bilinguals in cognitive control could lie in the monitoring process, while for all bilinguals, inhibition during a Stimulus-Stimulus conflict could be a major component in the mechanism of bilingual language processing.


2020 ◽  
Vol 10 (11) ◽  
pp. 875 ◽  
Author(s):  
Pierre Besson ◽  
Makii Muthalib ◽  
Christophe De Vassoigne ◽  
Jonh Rothwell ◽  
Stephane Perrey

A single session of priming cathodal transcranial direct current stimulation (tDCS) prior to anodal tDCS (c-a-tDCS) allows cumulative effects on motor learning and retention. However, the impact of multiple sessions of c-a-tDCS priming on learning and retention remains unclear. Here, we tested whether multiple sessions of c-a-tDCS (over 3 consecutive days) applied over the left sensorimotor cortex can further enhance motor learning and retention of an already learned visuo-motor task as compared to anodal tDCS (a-tDCS) or sham. In a between group and randomized double-blind sham-controlled study design, 25 participants separated in 3 independent groups underwent 2 days of baseline training without tDCS followed by 3-days of training with both online and offline tDCS, and two retention tests (1 and 14 days later). Each training block consisted of five trials of a 60 s circular-tracing task intersected by 60 s rest, and performance was assessed in terms of speed–accuracy trade-off represented notably by an index of performance (IP). The main findings of this exploratory study were that multiple sessions of c-a-tDCS significantly further enhanced IP above baseline training levels over the 3 training days that were maintained over the 2 retention days, but these learning and retention performance changes were not significantly different from the sham group. Subtle differences in the changes in speed–accuracy trade-off (components of IP) between c-a-tDCS (maintenance of accuracy over increasing speed) and a-tDCS (increasing speed over maintenance of accuracy) provide preliminary insights to a mechanistic modulation of motor performance with priming and polarity of tDCS.


1997 ◽  
Vol 20 (2) ◽  
pp. 306-307 ◽  
Author(s):  
Willem P. De Jong ◽  
Gerard P. Van Galen

Notwithstanding its overwhelming descriptive power for existing data, it is not clear whether the kinematic theory of Plamondon & Alimi could generate new insights into biomechanical constraints and psychological processes underlying the way organisms trade off speed for accuracy. The kinematic model should elaborate on the role of neuromotor noise and on biomechanical strategies for reducing endpoint variability related to such noise.


2012 ◽  
Vol 367 (1603) ◽  
pp. 2762-2772 ◽  
Author(s):  
Andrew Sih ◽  
Marco Del Giudice

With the exception of a few model species, individual differences in cognition remain relatively unstudied in non-human animals. One intriguing possibility is that variation in cognition is functionally related to variation in personality. Here, we review some examples and present hypotheses on relationships between personality (or behavioural syndromes) and individual differences in cognitive style. Our hypotheses are based largely on a connection between fast–slow behavioural types (BTs; e.g. boldness, aggressiveness, exploration tendency) and cognitive speed–accuracy trade-offs. We also discuss connections between BTs, cognition and ecologically important aspects of decision-making, including sampling, impulsivity, risk sensitivity and choosiness. Finally, we introduce the notion of cognition syndromes, and apply ideas from theories on adaptive behavioural syndromes to generate predictions on cognition syndromes.


2008 ◽  
Vol 364 (1518) ◽  
pp. 845-852 ◽  
Author(s):  
Nigel R Franks ◽  
François-Xavier Dechaume-Moncharmont ◽  
Emma Hanmore ◽  
Jocelyn K Reynolds

Compromises between speed and accuracy are seemingly inevitable in decision-making when accuracy depends on time-consuming information gathering. In collective decision-making, such compromises are especially likely because information is shared to determine corporate policy. This political process will also take time. Speed–accuracy trade-offs occur among house-hunting rock ants, Temnothorax albipennis . A key aspect of their decision-making is quorum sensing in a potential new nest. Finding a sufficient number of nest-mates, i.e. a quorum threshold (QT), in a potential nest site indicates that many ants find it suitable. Quorum sensing collates information. However, the QT is also used as a switch, from recruitment of nest-mates to their new home by slow tandem running, to recruitment by carrying, which is three times faster. Although tandem running is slow, it effectively enables one successful ant to lead and teach another the route between the nests. Tandem running creates positive feedback; more and more ants are shown the way, as tandem followers become, in turn, tandem leaders. The resulting corps of trained ants can then quickly carry their nest-mates; but carried ants do not learn the route. Therefore, the QT seems to set both the amount of information gathered and the speed of the emigration. Low QTs might cause more errors and a slower emigration—the worst possible outcome. This possible paradox of quick decisions leading to slow implementation might be resolved if the ants could deploy another positive-feedback recruitment process when they have used a low QT. Reverse tandem runs occur after carrying has begun and lead ants back from the new nest to the old one. Here we show experimentally that reverse tandem runs can bring lost scouts into an active role in emigrations and can help to maintain high-speed emigrations. Thus, in rock ants, although quick decision-making and rapid implementation of choices are initially in opposition, a third recruitment method can restore rapid implementation after a snap decision. This work reveals a principle of widespread importance: the dynamics of collective decision-making (i.e. the politics) and the dynamics of policy implementation are sometimes intertwined, and only by analysing the mechanisms of both can we understand certain forms of adaptive organization.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Jan Drugowitsch ◽  
Gregory C DeAngelis ◽  
Dora E Angelaki ◽  
Alexandre Pouget

For decisions made under time pressure, effective decision making based on uncertain or ambiguous evidence requires efficient accumulation of evidence over time, as well as appropriately balancing speed and accuracy, known as the speed/accuracy trade-off. For simple unimodal stimuli, previous studies have shown that human subjects set their speed/accuracy trade-off to maximize reward rate. We extend this analysis to situations in which information is provided by multiple sensory modalities. Analyzing previously collected data (<xref ref-type="bibr" rid="bib4">Drugowitsch et al., 2014</xref>), we show that human subjects adjust their speed/accuracy trade-off to produce near-optimal reward rates. This trade-off can change rapidly across trials according to the sensory modalities involved, suggesting that it is represented by neural population codes rather than implemented by slow neuronal mechanisms such as gradual changes in synaptic weights. Furthermore, we show that deviations from the optimal speed/accuracy trade-off can be explained by assuming an incomplete gradient-based learning of these trade-offs.


2013 ◽  
Vol 280 (1754) ◽  
pp. 20122003 ◽  
Author(s):  
B. H. Lemasson ◽  
J. J. Anderson ◽  
R. A. Goodwin

Animals are capable of enhanced decision making through cooperation, whereby accurate decisions can occur quickly through decentralized consensus. These interactions often depend upon reliable social cues, which can result in highly coordinated activities in uncertain environments. Yet information within a crowd may be lost in translation, generating confusion and enhancing individual risk. As quantitative data detailing animal social interactions accumulate, the mechanisms enabling individuals to rapidly and accurately process competing social cues remain unresolved. Here, we model how motion-guided attention influences the exchange of visual information during social navigation. We also compare the performance of this mechanism to the hypothesis that robust social coordination requires individuals to numerically limit their attention to a set of n -nearest neighbours. While we find that such numerically limited attention does not generate robust social navigation across ecological contexts, several notable qualities arise from selective attention to motion cues. First, individuals can instantly become a local information hub when startled into action, without requiring changes in neighbour attention level. Second, individuals can circumvent speed–accuracy trade-offs by tuning their motion thresholds. In turn, these properties enable groups to collectively dampen or amplify social information. Lastly, the minority required to sway a group's short-term directional decisions can change substantially with social context. Our findings suggest that motion-guided attention is a fundamental and efficient mechanism underlying collaborative decision making during social navigation.


1983 ◽  
Vol 5 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Janet L. Starkes ◽  
Fran Allard

Volleyball players and nonplayers were compared for speed and accuracy of performance in a task involving detection of the presence of a volleyball in rapidly presented slides of a volleyball situation. Slides depicted both game and nongame situations, and subjects performed the task in both noncompetitive and competitive conditions. For all subjects, game information was perceived more quickly and accurately than nongame information. In competition all subjects showed decreased perceptual accuracy and no change in criterion, supporting the Easterbrook (1959) notion of perceptual narrowing with stress. Very large accompanying increases in response speed, however, suggested that competition may induce adoption of a particular speed-accuracy trade-off. Cognitive flexibility in the adoption of particular speed-accuracy trade-offs is discussed with reference to volleyball.


2021 ◽  
Author(s):  
Hae-Young Kim ◽  
Anna Bershteyn ◽  
Jessica B. McGillen ◽  
R. Scott Braithwaite

AbstractIntroductionNew York City (NYC) was a global epicenter of COVID-19. Vaccines against COVID-19 became available in December 2020 with limited supply, resulting in the need for policies regarding prioritization. The next month, SARS-CoV-2 variants were detected that were more transmissible but still vaccine-susceptible, raising scrutiny of these policies. In particular, prioritization of higher-risk people could prevent more deaths per dose of vaccine administered but could also delay herd immunity if the prioritization introduced bottlenecks that lowered vaccination speed (the number of doses that could be delivered per day). We used mathematical modeling to examine the trade-off between prioritization and the vaccination speed.MethodsA stochastic, discrete-time susceptible-exposed-infected-recovered (SEIR) model with age- and comorbidity-adjusted COVID-19 outcomes (infections, hospitalizations, and deaths by July 1, 2021) was used to examine the trade-off between vaccination speed and whether or not vaccination was prioritized to individuals age 65+ and “essential workers,” defined as including first responders and healthcare, transit, education, and public safety workers. The model was calibrated to COVID-19 hospital admissions, hospital census, ICU census, and deaths in NYC. Vaccination speed was assumed to be 10,000 doses per day starting December 15th, 2020 targeting healthcare workers and nursing home populations, and to subsequently expand at alternative starting times and speeds. We compared COVID-outcomes across alternative expansion starting times (January 15th, January 21st, or February 1st) and speeds (20,000, 30,000, 50,000, 100,000, 150,000, or 200,000 doses per day for the first dose), as well as alternative prioritization options (“yes” versus “no” prioritization of essential workers and people age 65+). Model projections were produced with and without considering the emergence of a SARS-COV-2 variant with 56% greater transmissibility over January and February, 2021.ResultsIn the absence of a COVID-19 vaccine, the emergence of the more transmissible variant would triple the peak in infections, hospitalizations, and deaths and more than double cumulative infections, hospitalizations, and deaths. To offset the harm from the more transmissible variant would require reaching a vaccination speed of at least 100,000 doses per day by January 15th or 150,000 per day by January 21st. Prioritizing people ages 65+ and essential workers increased the number of lives saved per vaccine dose delivered: with the emergence of a more transmissible variant, 8,000 deaths could be averted by delivering 115,000 doses per day without prioritization or 71,000 doses per day with prioritization. If prioritization were to cause a bottleneck in vaccination speed, more lives would be saved with prioritization only if the bottleneck reduced vaccination speed by less than one-third of the maximum vaccine delivery capacity. These trade-offs between vaccination speed and prioritization were robust over a wide range of delivery capacity.ConclusionsThe emergence of a more transmissible variant of SARS-CoV-2 has the potential to triple the 2021 epidemic peak and more than double the 2021 COVID-19 burden in NYC. Vaccination could only offset the harm of the more transmissible variant if high speed were achieved in mid-to late January. Prioritization of COVID-19 vaccines to higher-risk populations saves more lives only if it does not create an excessive vaccine delivery bottleneck.


Sign in / Sign up

Export Citation Format

Share Document