scholarly journals Sharp interface, one-dimensional seawater intrusion into a confined aquifer with controlled pumping: Analytical solution

2006 ◽  
Vol 42 (6) ◽  
Author(s):  
A. R. Kacimov ◽  
M. M. Sherif
Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Zongzhong Song ◽  
Hailong Li ◽  
Qian Ma ◽  
Chunmiao Zheng ◽  
Jiu Jimmy Jiao ◽  
...  

Although there are many existing analytical studies of tidal groundwater level fluctuations in coastal aquifer systems, few of them focus on an offshore submarine aquifer. Here, we consider tidal groundwater head fluctuations in a submarine leaky confined aquifer overlain by a semipermeable seabed. Both the seabed and the confined aquifer are assumed to extend horizontally infinitely. A one-dimensional mathematical model is established to describe the problem, and the analytical solution is derived. The impacts of the tidal loading efficiency, hydraulic conductivity and elastic storage of the semipermeable layer and aquifer on the groundwater head fluctuations in the aquifer system are analyzed and discussed. Solution analyses indicated that tidal loading effects tend to enhance the amplitude of the tidal groundwater fluctuation in the confined aquifer system and to reduce the phase shift between the groundwater head and the sea tide fluctuations.


2021 ◽  
Author(s):  
Lixiang Han ◽  
Mengmeng Yang ◽  
Peiting Wen ◽  
Wei Gao ◽  
nengjie huo ◽  
...  

One dimensional (1D)-two dimensional (2D) van der Waals (vdWs) mixed-dimensional heterostructures with advantages of atomically sharp interface, high quality and good compatibility have attracted tremendous attention in recent years. The...


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1952
Author(s):  
Subrata Halder ◽  
Lingaraj Dhal ◽  
Madan K. Jha

Providing sustainable water supply for domestic needs and irrigated agriculture is one of the most significant challenges for the current century. This challenge is more daunting in coastal regions. Groundwater plays a pivotal role in addressing this challenge and hence, it is under growing stress in several parts of the world. To address this challenge, a proper understanding of groundwater characteristics in an area is essential. In this study, spatio-temporal analyses of pre-monsoon and post-monsoon groundwater-levels of two coastal aquifer systems (upper leaky confined and underlying confined) were carried out in Purba Medinipur District, West Bengal, India. Trend analysis of seasonal groundwater-levels of the two aquifers systems was also performed using Mann-Kendall test, Linear Regression test, and Innovative Trend test. Finally, the status of seawater intrusion in the two aquifers was evaluated using available groundwater-quality data of Chloride (Cl−) and Total Dissolve Solids (TDS). Considerable spatial and temporal variability was found in the seasonal groundwater-levels of the two aquifers. Further, decreasing trends were spotted in the pre-monsoon and post-monsoon groundwater-level time series of the leaky confined and confined aquifers, except pre-monsoon groundwater-levels in Contai-I and Deshpran blocks, and the post-monsoon groundwater-level in Ramnagar-I block for the leaky confined aquifer. The leaky confined aquifer in Contai-I, Contai-III, and Deshpran blocks and the confined aquifer in Nandigram-I and Nandigram-II blocks are vulnerable to seawater intrusion. There is an urgent need for the real-time monitoring of groundwater-levels and groundwater quality in both the aquifer systems, which can ensure efficient management of coastal groundwater reserves.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1084-1092
Author(s):  
Hongyun Wang ◽  
Wesley A. Burgei ◽  
Hong Zhou

Abstract Pennes’ bioheat equation is the most widely used thermal model for studying heat transfer in biological systems exposed to radiofrequency energy. In their article, “Effect of Surface Cooling and Blood Flow on the Microwave Heating of Tissue,” Foster et al. published an analytical solution to the one-dimensional (1-D) problem, obtained using the Fourier transform. However, their article did not offer any details of the derivation. In this work, we revisit the 1-D problem and provide a comprehensive mathematical derivation of an analytical solution. Our result corrects an error in Foster’s solution which might be a typo in their article. Unlike Foster et al., we integrate the partial differential equation directly. The expression of solution has several apparent singularities for certain parameter values where the physical problem is not expected to be singular. We show that all these singularities are removable, and we derive alternative non-singular formulas. Finally, we extend our analysis to write out an analytical solution of the 1-D bioheat equation for the case of multiple electromagnetic heating pulses.


Author(s):  
M. Fang ◽  
S. Chandra ◽  
C. B. Park

Experiments were conducted to determine conditions under which good metallurgical bonding was achieved in vertical walls composed of multiple layers of droplets that were fabricated by depositing tin droplets layer by layer. Molten tin droplets (0.75 mm diameter) were deposited using a pneumatic droplet generator on an aluminum substrate. The primary parameters varied in experiments were those found to most affect bonding between droplets on different layers: droplet temperature (varied from 250°C to 325°C) and substrate temperature (varied from 100°C to 190°C). Considering the cooling rate of droplet is much faster than the deposition rate previous deposition layer cooled down too much that impinging droplets could only remelt a thin surface layer after impact. Assuming that remelting between impacting droplets and the previous deposition layer is a one-dimensional Stefan problem with phase change an analytical solution can be found and applied to predict the minimum droplet temperature and substrate temperature required for local remelting. It was experimentally confirmed that good bonding at the interface of two adjacent layers could be achieved when the experimental parameters were such that the model predicted remelting.


1999 ◽  
Author(s):  
Alexander V. Kasharin ◽  
Jens O. M. Karlsson

Abstract The process of diffusion-limited cell dehydration is modeled for a planar system by writing the one-dimensional diffusion-equation for a cell with moving, semipermeable boundaries. For the simplifying case of isothermal dehydration with constant diffusivity, an approximate analytical solution is obtained by linearizing the governing partial differential equations. The general problem must be solved numerically. The Forward Time Center Space (FTCS) and Crank-Nicholson differencing schemes are implemented, and evaluated by comparison with the analytical solution. Putative stability criteria for the two algorithms are proposed based on numerical experiments, and the Crank-Nicholson method is shown to be accurate for a mesh with as few as six nodes.


Sign in / Sign up

Export Citation Format

Share Document