scholarly journals A model for the relationship between tropical precipitation and column water vapor

2009 ◽  
Vol 36 (16) ◽  
Author(s):  
Caroline J. Muller ◽  
Larissa E. Back ◽  
Paul A. O'Gorman ◽  
Kerry A. Emanuel
2020 ◽  
Vol 15 ◽  
pp. 155892501990083
Author(s):  
Xintong Li ◽  
Honglian Cong ◽  
Zhe Gao ◽  
Zhijia Dong

In this article, thermal resistance test and water vapor resistance test were experimented to obtain data of heat and humidity performance. Canonical correlation analysis was used on determining influence of basic fabric parameters on heat and humidity performance. Thermal resistance model and water vapor resistance model were established with a three-layered feedforward-type neural network. For the generalization of the network and the difficulty of determining the optimal network structure, trainbr was chosen as training algorithm to find the relationship between input factors and output data. After training and verification, the number of hidden layer neurons in the thermal resistance model was 12, and the error reached 10−3. In the water vapor resistance model, the number of hidden layer neurons was 10, and the error reached 10−3.


2011 ◽  
Vol 68 (8) ◽  
pp. 1607-1619 ◽  
Author(s):  
Agnieszka A. Mrowiec ◽  
Stephen T. Garner ◽  
Olivier M. Pauluis

Abstract This paper discusses the possible existence of hurricanes in an atmosphere without water vapor and analyzes the dynamic and thermodynamic structures of simulated hurricane-like storms in moist and dry environments. It is first shown that the “potential intensity” theory for axisymmetric hurricanes is directly applicable to the maintenance of a balanced vortex sustained by a combination of surface energy and momentum flux, even in the absence of water vapor. This theoretical insight is confirmed by simulations with a high-resolution numerical model. The same model is then used to compare dry and moist hurricanes. While it is found that both types of storms exhibit many similarities and fit well within the theoretical framework, there are several differences, most notably in the storm inflow and in the relationship between hurricane size and intensity. Such differences indicate that while water vapor is not necessary for the maintenance of hurricane-like vortices, moist processes directly affect the structure of these storms.


2002 ◽  
Vol 107 (D23) ◽  
pp. ACL 20-1-ACL 20-15 ◽  
Author(s):  
Segun Ogunjemiyo ◽  
Dar A. Roberts ◽  
Keir Keightley ◽  
Susan L. Ustin ◽  
Tom Hinckley ◽  
...  

1988 ◽  
Vol 65 (3) ◽  
pp. 1281-1285
Author(s):  
R. R. Martin ◽  
R. Peslin ◽  
C. Duvivier ◽  
C. Gallina

Alveolar gas volume (AGV) may be measured in humans (Peslin et al., J. Appl. Physiol. 62: 359-363, 1987) by applying very slow sinusoidal variations of ambient pressure (delta Pam) around the body and studying the relationship between delta Pam and the resulting gas displacement at the mouth (delta Vaw): AGVapc = (PB.delta Vaw)/(delta Pam.cos phi), where AGVapc is AGV measured by ambient pressure changes, PB is barometric minus alveolar water vapor pressure, and phi is the phase angle between Pam and Vaw. The applicability of this method to excised lungs at various transpulmonary pressures was assessed in six rabbit lungs and three dog lobes by reference to AGV measurements by He dilution (AGVdil) and by a volumetric method (AGVvol). Except in one instance, AGVapc did not change significantly when the frequency of delta Pam was varied from 0.02 to 0.2 Hz. AGVapc was highly correlated (P less than 0.001) to both AGVdil and AGVvol. It did not differ significantly from AGVdil (81.4 +/- 50.6 vs. 80.2 +/- 44.2 ml) and was only marginally higher than AGVvol (64.6 +/- 26.9 vs. 62.4 +/- 24.4 ml, P less than 0.05). We conclude that the method usually provides accurate results in excised lung preparations. Its main advantages are that it does not require manipulating the lung or changing its volume and that the measurement takes less than 1 min.


2019 ◽  
Vol 32 (21) ◽  
pp. 7575-7594 ◽  
Author(s):  
Bo Sun ◽  
Huijun Wang ◽  
Botao Zhou

Abstract This study examined the interdecadal variations in the relationship between the East Asian water vapor transport (WVT) and the central and eastern tropical Pacific (CETP) sea surface temperatures (SSTs) in January during 1951–2018, focusing on the meridional WVT over East Asia, which is critical for the East Asian winter precipitation. The results indicate that before the 1980s, an increased southerly WVT over East Asia was generally associated with warm SST anomalies in the CETP during January, whereas, after the mid-1980s, an increased southerly WVT over East Asia was mostly associated with cold SST anomalies in the central tropical Pacific during January. The underlying mechanisms are discussed based on a comparison on the climate anomalies associated with the East Asian meridional WVT between the periods of 1951–79 and 1986–2018. During 1951–79, the meridional WVT over East Asia was mainly modulated by the Pacific–East Asian (PEA) teleconnection, which would induce an anomalous southerly WVT over East Asia corresponding to warm SST anomalies in the CETP. Whereas, during 1986–2018, the connection between the PEA teleconnection and the East Asian meridional WVT was weakened. The connection among the CETP SSTs, the anomalous zonal circulation over the North Pacific, and the East Asian meridional WVT was enhanced. Additionally, the connection among the CETP SSTs, the circumglobal teleconnection in the Northern Hemisphere, and the East Asian meridional WVT was enhanced. The above two enhanced connections opposed the effect of the PEA teleconnection and would induce an anomalous southerly WVT over East Asia corresponding to cold SST anomalies in the central tropical Pacific.


2013 ◽  
Vol 26 (14) ◽  
pp. 5028-5043 ◽  
Author(s):  
Caroline Muller

Abstract In this study the response of tropical precipitation extremes to warming in organized convection is examined using a cloud-resolving model. Vertical shear is imposed to organize the convection into squall lines. Earlier studies show that in disorganized convection, the fractional increase of precipitation extremes is similar to that of surface water vapor, which is substantially smaller than the increase in column water vapor. It has been suggested that organized convection could lead to stronger amplifications. Regardless of the strength of the shear, amplifications of precipitation extremes in the cloud-resolving simulations are comparable to those of surface water vapor and are substantially less than increases in column water vapor. The results without shear and with critical shear, for which the squall lines are perpendicular to the shear, are surprisingly similar with a fractional rate of increase of precipitation extremes slightly smaller than that of surface water vapor. Interestingly, the dependence on shear is nonmonotonic, and stronger supercritical shear yields larger rates, close to or slightly larger than surface humidity. A scaling is used to evaluate the thermodynamic and dynamic contributions to precipitation extreme changes. To first order, they are dominated by the thermodynamic component, which has the same magnitude for all shears, close to the change in surface water vapor. The dynamic contribution plays a secondary role and tends to weaken extremes without shear and with critical shear, while it strengthens extremes with supercritical shear. These different dynamic contributions for different shears are due to different responses of convective mass fluxes in individual updrafts to warming.


2014 ◽  
Vol 34 (17) ◽  
Author(s):  
刘玉莉 LIU Yuli ◽  
江洪 JANG Hong ◽  
周国模 ZHOU Guomo ◽  
陈云飞 CHEN Yunfei ◽  
孙成 SUN Cheng ◽  
...  

2020 ◽  
Author(s):  
Rosa Vargas Martes ◽  
Angel Adames Corraliza

<p>Easterly Waves (EW) in the Pacific Ocean (PEW) and over Africa (AEW) account for a large fraction of rainfall variability in their respective regions. Although multiple studies have been conducted to better understand EWs, many questions remain regarding their structure, development, and coupling to deep convection. Recent studies have highlighted the relationship between water vapor and precipitation in tropical motion systems. However, EW have not been studied within this context. On the basis of Empirical Orthogonal Functions (EOFs) and a novel plume-buoyancy framework, the thermodynamic processes associated with EW-related convection are elucidated. A linear regression analysis reveals the relationship between temperature, moisture, and precipitation in EW. Temperature anomalies are found to be highly correlated in space and time with anomalies in specific humidity. However, this coupling between temperature and moisture is more robust in AEWs than PEWs. In PEWs moisture accounts for a larger fraction of precipitation variability. Results suggest that the convective coupling mechanism in AEW may differ from the coupling mechanism of PEWs.</p>


Sign in / Sign up

Export Citation Format

Share Document