Axisymmetric Hurricane in a Dry Atmosphere: Theoretical Framework and Numerical Experiments

2011 ◽  
Vol 68 (8) ◽  
pp. 1607-1619 ◽  
Author(s):  
Agnieszka A. Mrowiec ◽  
Stephen T. Garner ◽  
Olivier M. Pauluis

Abstract This paper discusses the possible existence of hurricanes in an atmosphere without water vapor and analyzes the dynamic and thermodynamic structures of simulated hurricane-like storms in moist and dry environments. It is first shown that the “potential intensity” theory for axisymmetric hurricanes is directly applicable to the maintenance of a balanced vortex sustained by a combination of surface energy and momentum flux, even in the absence of water vapor. This theoretical insight is confirmed by simulations with a high-resolution numerical model. The same model is then used to compare dry and moist hurricanes. While it is found that both types of storms exhibit many similarities and fit well within the theoretical framework, there are several differences, most notably in the storm inflow and in the relationship between hurricane size and intensity. Such differences indicate that while water vapor is not necessary for the maintenance of hurricane-like vortices, moist processes directly affect the structure of these storms.

Author(s):  
Robert M. Glaeser

It is well known that a large flux of electrons must pass through a specimen in order to obtain a high resolution image while a smaller particle flux is satisfactory for a low resolution image. The minimum particle flux that is required depends upon the contrast in the image and the signal-to-noise (S/N) ratio at which the data are considered acceptable. For a given S/N associated with statistical fluxtuations, the relationship between contrast and “counting statistics” is s131_eqn1, where C = contrast; r2 is the area of a picture element corresponding to the resolution, r; N is the number of electrons incident per unit area of the specimen; f is the fraction of electrons that contribute to formation of the image, relative to the total number of electrons incident upon the object.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
P. A. Marsh ◽  
T. Mullens ◽  
D. Price

It is possible to exceed the guaranteed resolution on most electron microscopes by careful attention to microscope parameters essential for high resolution work. While our experience is related to a Philips EM-200, we hope that some of these comments will apply to all electron microscopes.The first considerations are vibration and magnetic fields. These are usually measured at the pre-installation survey and must be within specifications. It has been our experience, however, that these factors can be greatly influenced by the new facilities and therefore must be rechecked after the installation is completed. The relationship between the resolving power of an EM-200 and the maximum tolerable low frequency interference fields in milli-Oerstedt is 10 Å - 1.9, 8 Å - 1.4, 6 Å - 0.8.


2020 ◽  
Vol 132 (5) ◽  
pp. 1358-1366
Author(s):  
Chao-Hung Kuo ◽  
Timothy M. Blakely ◽  
Jeremiah D. Wander ◽  
Devapratim Sarma ◽  
Jing Wu ◽  
...  

OBJECTIVEThe activation of the sensorimotor cortex as measured by electrocorticographic (ECoG) signals has been correlated with contralateral hand movements in humans, as precisely as the level of individual digits. However, the relationship between individual and multiple synergistic finger movements and the neural signal as detected by ECoG has not been fully explored. The authors used intraoperative high-resolution micro-ECoG (µECoG) on the sensorimotor cortex to link neural signals to finger movements across several context-specific motor tasks.METHODSThree neurosurgical patients with cortical lesions over eloquent regions participated. During awake craniotomy, a sensorimotor cortex area of hand movement was localized by high-frequency responses measured by an 8 × 8 µECoG grid of 3-mm interelectrode spacing. Patients performed a flexion movement of the thumb or index finger, or a pinch movement of both, based on a visual cue. High-gamma (HG; 70–230 Hz) filtered µECoG was used to identify dominant electrodes associated with thumb and index movement. Hand movements were recorded by a dataglove simultaneously with µECoG recording.RESULTSIn all 3 patients, the electrodes controlling thumb and index finger movements were identifiable approximately 3–6-mm apart by the HG-filtered µECoG signal. For HG power of cortical activation measured with µECoG, the thumb and index signals in the pinch movement were similar to those observed during thumb-only and index-only movement, respectively (all p > 0.05). Index finger movements, measured by the dataglove joint angles, were similar in both the index-only and pinch movements (p > 0.05). However, despite similar activation across the conditions, markedly decreased thumb movement was observed in pinch relative to independent thumb-only movement (all p < 0.05).CONCLUSIONSHG-filtered µECoG signals effectively identify dominant regions associated with thumb and index finger movement. For pinch, the µECoG signal comprises a combination of the signals from individual thumb and index movements. However, while the relationship between the index finger joint angle and HG-filtered signal remains consistent between conditions, there is not a fixed relationship for thumb movement. Although the HG-filtered µECoG signal is similar in both thumb-only and pinch conditions, the actual thumb movement is markedly smaller in the pinch condition than in the thumb-only condition. This implies a nonlinear relationship between the cortical signal and the motor output for some, but importantly not all, movement types. This analysis provides insight into the tuning of the motor cortex toward specific types of motor behaviors.


Author(s):  
Justine Pila

This book offers a study of the subject matter protected by each of the main intellectual property (IP) regimes. With a focus on European and UK law particularly, it considers the meaning of the terms used to denote the objects to which IP rights attach, such as ‘invention’, ‘authorial work’, ‘trade mark’, and ‘design’, with reference to the practice of legal officials and the nature of those objects specifically. To that end it proceeds in three stages. At the first stage, in Chapter 2, the nature, aims, and values of IP rights and systems are considered. As historically and currently conceived, IP rights are limited (and generally transferable) exclusionary rights that attach to certain intellectual creations, broadly conceived, and that serve a range of instrumentalist and deontological ends. At the second stage, in Chapter 3, a theoretical framework for thinking about IP subject matter is proposed with the assistance of certain devices from philosophy. That framework supports a paradigmatic conception of the objects protected by IP rights as artifact types distinguished by their properties and categorized accordingly. From this framework, four questions are derived concerning: the nature of the (categories of) subject matter denoted by the terms ‘invention’, ‘authorial work’, ‘trade mark’, ‘design’ etc, including their essential properties; the means by which each subject matter is individuated within the relevant IP regime; the relationship between each subject matter and its concrete instances; and the manner in which the existence of a subject matter and its concrete instances is known. That leaves the book’s final stage, in Chapters 3 to 7. Here legal officials’ use of the terms above, and understanding of the objects that they denote, are studied, and the results presented as answers to the four questions identified previously.


2021 ◽  
pp. 1-13
Author(s):  
Hajar Boutmaghzoute ◽  
Karim Moustaghfir

BACKGROUND: This study builds on the little guidance in the existing literature to analyze the relationship between employee-oriented CSR actions and employee retention in a business context, while using Freeman stakeholders’ model as a theoretical research framework. This research also aims to shed light on significant behavioral factors facilitating the relationship between CSR endeavors and turnover rate. OBJECTIVE: This paper builds on the existing research gap in the literature and suggests that behavioral factors, including job satisfaction, organizational identification, and motivation facilitate the relationship between employee-oriented CSR actions and employee retention, which contributes to laying the foundations of a theoretical framework that has the potential to advance both theoretical and practitioner debates and disentangle the complexity of such a relationship, while offering strategically-focused development venues in CSR and HRM fields. METHODS: This research uses a single case study design to ensure an in-depth and detailed analysis of the phenomenon under scrutiny, while relying on a triangulation methodology for data collection, including a questionnaire used as exploratory approach, interviews to generate explanatory data, and archival data to bring confirmatory insights. Data analysis followed the procedures of a deductive approach. RESULTS: The research results show a positive relationship between employee-oriented CSR actions and employee retention, while demonstrating the facilitating role of job satisfaction, organizational identification, and motivation in moderating such a relationship. The findings also stress the importance of framing CSR interventions within the organization’s strategy and goals, while ensuring employee participation in such decision making processes to maximize the effect of CSR interventions on employee commitment and reduce turnover. CONCLUSIONS: This research has the potential to better clarify the nature of the relationship involving CSR interventions, from an employee perspective, retention, and turnover, while laying the foundations of a theoretical framework linking such constructs and other behavioral factors that underpin and support such a relationship. Building on the study’s findings and assumptions, future research is needed to gain a more comprehensive understanding of how HR-related CSR actions affect behavioral performance dimensions, resulting in employee commitment and retention. Future research should also consider multiple case study, multicultural, and ethnographic approaches for the sake of generalizability and theory building.


2020 ◽  
Vol 15 ◽  
pp. 155892501990083
Author(s):  
Xintong Li ◽  
Honglian Cong ◽  
Zhe Gao ◽  
Zhijia Dong

In this article, thermal resistance test and water vapor resistance test were experimented to obtain data of heat and humidity performance. Canonical correlation analysis was used on determining influence of basic fabric parameters on heat and humidity performance. Thermal resistance model and water vapor resistance model were established with a three-layered feedforward-type neural network. For the generalization of the network and the difficulty of determining the optimal network structure, trainbr was chosen as training algorithm to find the relationship between input factors and output data. After training and verification, the number of hidden layer neurons in the thermal resistance model was 12, and the error reached 10−3. In the water vapor resistance model, the number of hidden layer neurons was 10, and the error reached 10−3.


2013 ◽  
Vol 69 (11) ◽  
pp. 1221-1224 ◽  
Author(s):  
Fangfang Pan ◽  
Irmgard Kalf ◽  
Ulli Englert

Diffraction results obtained at 100 and 291 K, the former at high resolution, are reported for the title compound, [Cu(C10H9N4O2S)2(NH3)2] or [Cu(sulfa)2(NH3)2] [Hsulfa is 4-amino-N-(pyrimidin-2-yl)benzenesulfonamide]. The CuIIcation is coordinated by two N-atom donors from a bidentate sulfa ligand, by two ammonia molecules in the equatorial plane and by a monohapto (η1) sulfadiazine at the apex of a distorted square pyramid. The present interpretation and two earlier reports [Brown, Cook & Sengier (1987).Acta Cryst.C43, 2332–2334; Tommasino, Renaud, Luneau & Pilet (2011).Polyhedron,30, 1663–1670] disagree about the nature and geometry of the ligands. The relationship between the present result and the former is discussed, and evidence is provided that the latter erroneously assigned an ammine as an aqua ligand.


Sign in / Sign up

Export Citation Format

Share Document