scholarly journals The vertical connection of the quasi-biennial oscillation-modulated 11 year solar cycle signature in geopotential height and planetary waves during Northern Hemisphere early winter

2011 ◽  
Vol 116 (D13) ◽  
Author(s):  
Ingrid Cnossen ◽  
Hua Lu
Author(s):  
Yousuke Yamashita ◽  
Hideharu Akiyoshi ◽  
Masaaki Takahashi

Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during the period of 1979–2011. For this duration, we found that the composite mean of the Northern Hemisphere high-latitude total ozone in the QBO-westerly (QBO-W)/solar minimum (Smin) phase is slightly smaller than those averaged for the QBO-W/Smax and QBO-E/Smax years in March. An analysis of a passive ozone tracer in the CCM simulation indicates that this negative anomaly is primarily caused by transport. The negative anomaly is consistent with a weakening of the residual mean downward motion in the polar lower stratosphere. The contribution of chemical processes estimated using the column amount difference between ozone and the passive ozone tracer is between 10–20% of the total anomaly in March. The lower ozone levels in the Arctic spring during the QBO-W/Smin years are associated with a stronger Arctic polar vortex from late winter to early spring, which is linked to the reduced occurrence of sudden stratospheric warming in the winter during the QBO-W/Smin years.


2012 ◽  
Vol 12 (11) ◽  
pp. 30825-30867
Author(s):  
G. Kirgis ◽  
T. Leblanc ◽  
I. S. McDermid ◽  
T. D. Walsh

Abstract. The Jet Propulsion Laboratory (JPL) lidars, at the Mauna Loa Observatory, Hawaii (MLO, 19.5° N, 155.6° W) and the JPL Table Mountain Facility (TMF, California, 34.5° N, 117.7° W), have been measuring vertical profiles of stratospheric ozone routinely since the early 1990's and late-1980s respectively. Interannual variability of ozone above these two sites was investigated using a multi-linear regression analysis on the deseasonalized monthly mean lidar and satellite time-series at 1 km intervals between 20 and 45 km from January 1995 to April 2011, a period of low volcanic aerosol loading. Explanatory variables representing the 11-yr solar cycle, the El Niño Southern Oscillation, the Quasi-Biennial Oscillation, the Eliassen–Palm flux, and horizontal and vertical transport were used. A new proxy, the mid-latitude ozone depleting gas index, which shows a decrease with time as an outcome of the Montreal Protocol, was introduced and compared to the more commonly used linear trend method. The analysis also compares the lidar time-series and a merged time-series obtained from the space-borne stratospheric aerosol and gas experiment II, halogen occultation experiment, and Aura-microwave limb sounder instruments. The results from both lidar and satellite measurements are consistent with recent model simulations which propose changes in tropical upwelling. Additionally, at TMF the ozone depleting gas index explains as much variance as the Quasi-Biennial Oscillation in the upper stratosphere. Over the past 17 yr a diminishing downward trend in ozone was observed before 2000 and a net increase, and sign of ozone recovery, is observed after 2005. Our results which include dynamical proxies suggest possible coupling between horizontal transport and the 11-yr solar cycle response, although a dataset spanning a period longer than one solar cycle is needed to confirm this result.


2020 ◽  
Author(s):  
James Anstey ◽  
Tim Banyard ◽  
Neal Butchart ◽  
Lawrence Coy ◽  
Paul Newman ◽  
...  

Abstract The quasi-biennial oscillation (QBO) is a repeating cycle of tropical stratosphere winds reversing direction from eastward to westward roughly every 14 months. Discovered independently by British and American scientists the QBO continued uninterrupted for 27 cycles from 1953 until February 2016 when a westward jet unexpectedly formed in the lower stratosphere during the eastward phase. This disruption is attributed to unusually high wave-momentum fluxes from the Northern Hemisphere. A second, similar, QBO disruption occurred during the 2019/2020 northern winter though wave fluxes from the Northern Hemisphere were weak. Here we show that this latest disruption to the regular QBO cycling was stronger than that seen in 2016 and resulted from horizontal momentum transport from the Southern Hemisphere during abnormal winter conditions. In both disruptions the normal downward progression of the QBO halts and the eastward shear zone above the disruption moves upward assisted by stronger tropical upwelling during the boreal winter. The predictable signal associated with the QBO's quasi-regular phase progression is permanently lost during disruptions and the oscillation reemerges after a few months significantly shifted in phase from what would be expected if the phase had progressed uninterrupted. We infer from an increased wave-momentum flux into equatorial latitudes seen in model climate projections supporting the latest Intergovernmental Panel on Climate Change (IPCC) assessment that disruptions to the QBO are likely to be more common in future. Consequently, we anticipate that in future the QBO will be a less reliable source of predictability on lead times extending out to several years than it currently is.


2010 ◽  
Vol 23 (14) ◽  
pp. 3953-3966 ◽  
Author(s):  
Bo Christiansen

Abstract The Northern Hemisphere extended winter mean stratospheric vortex alternates between a strong and a weak state, which is manifested in a statistically significant bimodal distribution. In the end of the 1970s a regime change took place, increasing the frequency of the strong phase relative to the weak phase. This paper investigates the connection between the regime behavior of the vortex and the equatorial quasi-biennial oscillation (QBO) in three different datasets. Although there are some differences between the datasets, they agree regarding the general picture. It is found that stratospheric equatorial wind between 70 and 8 hPa shows a bimodal structure in the Northern Hemisphere winter. Such bimodality is nontrivial as it requires only weak variability in the amplitude. Unimodality is found above 8 hPa, where the semiannual oscillation dominates. A strong coincidence is found between strong (weak) vortex winters and winter in the westerly (easterly) QBO regime. Furthermore, the change of the vortex in the late 1970s can be related to a change in the QBO from a period with strong bimodality to a period with weak bimodality. Careful consideration of the statistical significance shows that this change in the QBO can be a random process simply related to the annual sampling of the QBO. Finally, previous findings of phase locking between the QBO and the annual cycle are considered; it is shown that the phase locking is related to the seasonal variations in the bimodality of the QBO.


2020 ◽  
Vol 1 (1) ◽  
pp. 247-259
Author(s):  
Kirsten J. Mayer ◽  
Elizabeth A. Barnes

Abstract. The Madden–Julian Oscillation (MJO) is known to force extratropical weather days to weeks following an MJO event through excitation of stationary Rossby waves, also referred to as tropical–extratropical teleconnections. Prior research has demonstrated that this tropically forced midlatitude response leads to increased prediction skill on subseasonal to seasonal (S2S) timescales. Furthermore, the Quasi-Biennial Oscillation (QBO) has been shown to possibly alter these teleconnections through modulation of the MJO itself and the atmospheric basic state upon which the Rossby waves propagate. This implies that the MJO–QBO relationship may affect midlatitude circulation prediction skill on S2S timescales. In this study, we quantify midlatitude circulation sensitivity and prediction skill following active MJOs and QBOs across the Northern Hemisphere on S2S timescales through an examination of the 500 hPa geopotential height field. First, a comparison of the spatial distribution of Northern Hemisphere sensitivity to the MJO during different QBO phases is performed for European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis and ECMWF and the National Centers for Environmental Prediction (NCEP) hindcasts. Secondly, differences in prediction skill in ECMWF and NCEP hindcasts are quantified following MJO–QBO activity. In both hindcast systems, we find that regions across the Pacific, North America, and the Atlantic demonstrate an enhanced MJO impact on prediction skill during strong QBO periods with lead times of 1–4 weeks compared to MJO events during neutral QBO periods.


Sign in / Sign up

Export Citation Format

Share Document