scholarly journals On the Sensitivity of the Relationship Between Hadley Circulation Asymmetry and ENSO in CMIP5 Models

2018 ◽  
Vol 45 (17) ◽  
pp. 9253-9259 ◽  
Author(s):  
Yi-Peng Guo ◽  
Zhe-Min Tan
2020 ◽  
Vol 33 (1) ◽  
pp. 397-404 ◽  
Author(s):  
Nicholas Lewis ◽  
Judith Curry

AbstractCowtan and Jacobs assert that the method used by Lewis and Curry in 2018 (LC18) to estimate the climate system’s transient climate response (TCR) from changes between two time windows is less robust—in particular against sea surface temperature bias correction uncertainty—than a method that uses the entire historical record. We demonstrate that TCR estimated using all data from the temperature record is closely in line with that estimated using the LC18 windows, as is the median TCR estimate using all pairs of individual years. We also show that the median TCR estimate from all pairs of decade-plus-length windows is closely in line with that estimated using the LC18 windows and that incorporating window selection uncertainty would make little difference to total uncertainty in TCR estimation. We find that, when differences in the evolution of forcing are accounted for, the relationship over time between warming in CMIP5 models and observations is consistent with the relationship between CMIP5 TCR and LC18’s TCR estimate but fluctuates as a result of multidecadal internal variability and volcanism. We also show that various other matters raised by Cowtan and Jacobs have negligible implications for TCR estimation in LC18.


2018 ◽  
Vol 31 (16) ◽  
pp. 6393-6410 ◽  
Author(s):  
Jie Feng ◽  
Tao Lian

This study evaluates the relationship between the Madden–Julian oscillation (MJO) and the occurrence of equatorial Pacific westerly wind bursts (WWBs). During the convective MJO phase, anomalous surface westerlies prevail in and west of the convective MJO center, providing favorable conditions for WWBs. Compared with the probability of WWBs expected under a null hypothesis that WWBs occur randomly, the convective MJO phase almost doubles the probability of a WWB occurring. Nevertheless, only 34.46% of WWBs co-occur with the convective MJO, which is much less than that reported in previous studies. We show that when the MJO and WWBs are defined using the same field with overlapping frequencies, the percentage of WWBs co-occurring with the convective MJO shows a significant increase. However, the higher percentage is simply caused by the fact that the strong WWBs during a convective MJO are more likely to be identified than those during the suppressed and neutral MJO phases. A total of 45.80% of WWBs are found to occur in the full MJO phase (both the convective and suppressed MJO phases), which is slightly higher than that expected based on randomness. Although the full MJO has statistically significant impact on the likelihood of WWBs, the influence from the full MJO on the tropical Pacific sea surface temperature anomaly is much weaker as compared to that from the WWBs. The relationships between the MJO and WWBs simulated in CMIP5 models are also assessed, and the percentage of WWBs that co-occur with the MJO simulated in models is in general less than that in observations.


2021 ◽  
Author(s):  
Gabriel Chiodo ◽  
William T. Ball ◽  
Peer Nowack ◽  
Clara Orbe ◽  
James Keeble ◽  
...  

<p>Previous studies indicate a possible role of stratospheric ozone chemistry feedbacks in the climate response to 4xCO2, either via a reduction in equilibrium climate sensitivity (ECS) or via changes in the tropospheric circulation (Nowack et al., 2015; Chiodo and Polvani, 2017). However, these effects are subject to uncertainty. Part of the uncertainty may stem from the dependency of the feedback on the pattern of the ozone response, as the radiative efficiency of ozone largely depends on its vertical distribution (Lacis et al., 1990). Here, an analysis is presented of the ozone layer response to 4xCO2 in chemistry–climate models (CCMs) which participated to CMIP inter-comparisons. In a previous study using CMIP5 models, it has been shown that under 4xCO2, ozone decreases in the tropical lower stratosphere, and increases over the high latitudes and throughout the upper stratosphere (Chiodo et al., 2018). It was also found that a substantial portion of the spread in the tropical column ozone is tied to inter-model spread in tropical upwelling, which is in turn tied to ECS. Here, we revisit this connection using 4xCO2 data from CMIP6, thereby exploiting the larger number of CCMs available than in CMIP5. In addition, we explore the linearity of the ozone response, by complementing the analysis with simulations using lower CO2 forcing levels (2xCO2). We show that the pattern of the ozone response is similar to CMIP5. In some models (e.g. WACCM), we find larger ozone responses in CMIP6 than in CMIP5, partly because of the larger ECS and thus larger upwelling response in the tropical pipe. In this presentation, we will discuss the relationship between radiative forcing, transport and ozone, as well as further implications for CMIP6 models.</p>


2020 ◽  
Vol 141 (3-4) ◽  
pp. 1475-1491
Author(s):  
Jianbo Cheng ◽  
Shujuan Hu ◽  
Chenbin Gao ◽  
Xiaoya Hou ◽  
Zhihang Xu ◽  
...  

2018 ◽  
Vol 31 (19) ◽  
pp. 7789-7802 ◽  
Author(s):  
Sugata Narsey ◽  
Michael J. Reeder ◽  
Christian Jakob ◽  
Duncan Ackerley

The simulation of northern Australian wet season rainfall bursts by coupled climate models is evaluated. Individual models produce vastly different amounts of precipitation over the north of Australia during the wet season, and this is found to be related to the number of bursts they produce. The seasonal cycle of bursts is found to be poor in most of the models evaluated. It is known that northern Australian wet season bursts are often associated with midlatitude Rossby wave packets and their surface signature as they are refracted toward the tropics. The relationship between midlatitude waves and the initiation of wet season bursts is simulated well by the models evaluated. Another well-documented influence on the initiation of northern Australian wet season bursts is the Madden–Julian oscillation (MJO). No model adequately simulated the tropical outgoing longwave radiation temporal–spatial patterns seen in the reanalysis-derived OLR. This result suggests that the connection between the MJO and the initiation of northern Australian wet season bursts in models is poor.


2015 ◽  
Vol 32 (8) ◽  
pp. 1129-1142 ◽  
Author(s):  
Juan Feng ◽  
Jianping Li ◽  
Jianlei Zhu ◽  
Fei Li ◽  
Cheng Sun

2020 ◽  
Author(s):  
Kevin M. Grise ◽  
Sean M. Davis

Abstract. In response to increasing greenhouse gases, the subtropical edges of Earth's Hadley circulation shift poleward in global climate models. Recent studies have found that reanalysis trends in the Hadley cell edge over the past 30–40 years are within the range of trends simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) models, and have documented seasonal and hemispheric asymmetries in these trends. In this study, we evaluate whether these conclusions hold for the newest generation of models (CMIP6). Overall, we find similar characteristics of Hadley cell expansion in CMIP5 and CMIP6 models. In both CMIP5 and CMIP6 models, the poleward shift of the Hadley cell edge in response to increasing greenhouse gases is 2–3 times larger in the Southern Hemisphere (SH), except during September–November. The trends from CMIP5 and CMIP6 models agree well with reanalyses, although prescribing observed coupled atmosphere-ocean variability allows the models to better capture reanalysis trends in the Northern Hemisphere (NH). We find two notable differences between CMIP5 and CMIP6 models. First, both CMIP5 and CMIP6 models contract the NH summertime Hadley circulation equatorward (particularly over the Pacific sector), but this contraction is larger in CMIP6 models due to their higher average climate sensitivity. Second, in recent decades, the poleward shift of the NH annual-mean Hadley cell edge is slightly larger in CMIP6 models. Increasing greenhouse gases drive similar trends in CMIP5 and CMIP6 models, so the larger recent NH trends in CMIP6 models point to the role of other forcings, such as aerosols.


2016 ◽  
Vol 20 (12) ◽  
pp. 4837-4856 ◽  
Author(s):  
Paul A. Levine ◽  
James T. Randerson ◽  
Sean C. Swenson ◽  
David M. Lawrence

Abstract. The relationship between terrestrial water storage (TWS) and atmospheric processes has important implications for predictability of climatic extremes and projection of future climate change. In places where moisture availability limits evapotranspiration (ET), variability in TWS has the potential to influence surface energy fluxes and atmospheric conditions. Where atmospheric conditions, in turn, influence moisture availability, a full feedback loop exists. Here we developed a novel approach for measuring the strength of both components of this feedback loop, i.e., the forcing of the atmosphere by variability in TWS and the response of TWS to atmospheric variability, using satellite observations of TWS, precipitation, solar radiation, and vapor pressure deficit during 2002–2014. Our approach defines metrics to quantify the relationship between TWS anomalies and climate globally on a seasonal to interannual timescale. Metrics derived from the satellite data were used to evaluate the strength of the feedback loop in 38 members of the Community Earth System Model (CESM) Large Ensemble (LENS) and in six models that contributed simulations to phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop in LENS were stronger than in the satellite observations in tropical and temperate regions. Feedbacks in the selected CMIP5 models were not as strong as those found in LENS, but were still generally stronger than those estimated from the satellite measurements. Consistent with previous studies conducted across different spatial and temporal scales, our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere. We describe several possible mechanisms that may contribute to this bias, and discuss pathways through which models may overestimate ET or overestimate the sensitivity of ET to TWS.


2019 ◽  
Vol 32 (19) ◽  
pp. 6571-6588 ◽  
Author(s):  
Benjamin A. Stephens ◽  
Charles S. Jackson ◽  
Benjamin M. Wagman

Abstract We find that part of the uncertainty in the amplitude and pattern of the modeled precipitation response to CO2 forcing traces to tropical condensation not directly involved with parameterized convection. The fraction of tropical rainfall associated with large-scale condensation can vary from a few percent to well over half depending on model details and parameter settings. In turn, because of the coupling between condensation and tropical circulation, the different ways model assumptions affect the large-scale rainfall fraction also affect the patterns of the response within individual models. In two single-model ensembles based on the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM), versions 3.1 and 5.3, we find strong correlations between the fraction of tropical large-scale rain and both climatological rainfall and circulation and the response to CO2 forcing. While the effects of an increasing tropical large-scale rain fraction are opposite in some ways in the two ensembles—for example, the Hadley circulation weakens with the large-scale rainfall fraction in the CAM3.1 ensemble while strengthening in the CAM5.3 ensemble—we can nonetheless understand these different effects in terms of the relationship between latent heating and circulation, and we propose explanations for each ensemble. We compare these results with data from phase 5 of the Coupled Model Intercomparison Project (CMIP5), for which some of the same patterns hold. Given the importance of this partitioning, there is a need for constraining this source of uncertainty using observations. However, since a “large-scale rainfall fraction” is a modeling construct, it is not clear how observations may be used to test various modeling assumptions determining this fraction.


Sign in / Sign up

Export Citation Format

Share Document