scholarly journals Chlorophyll-a in Antarctic Landfast Sea Ice: A First Synthesis of Historical Ice Core Data

2018 ◽  
Vol 123 (11) ◽  
pp. 8444-8459 ◽  
Author(s):  
K. M. Meiners ◽  
M. Vancoppenolle ◽  
G. Carnat ◽  
G. Castellani ◽  
B. Delille ◽  
...  
2013 ◽  
Vol 7 (4) ◽  
pp. 3209-3230 ◽  
Author(s):  
M. Vancoppenolle ◽  
D. Notz ◽  
F. Vivier ◽  
J. Tison ◽  
B. Delille ◽  
...  

Abstract. We examine some practical aspects of using a mushy-layer Rayleigh number for the interpretation of sea-ice-core data. In principle, such analysis should allow one to determine convectively active regions within the ice core by identifying those regions in which the mush-Rayleigh number is super-critical. In practice, however, a quantitative analysis is complicated by uncertainties regarding the specific formulation of both the mush-Rayleigh number itself and of the sea-ice permeability that is crucial for quantifying the Rayleigh number. Additionally, brine loss from highly permeable sections of the ice core, in particular close to the ice–ocean interface, and typically weekly ice core sampling, limit the practical applicability of the Rayleigh number for ice-core interpretation. We here quantify these uncertainties, suggest a standard method for the computation of the Rayleigh number for sea ice and discuss possibilities and limitations of ice-core interpretation based on the Rayleigh number.


2012 ◽  
Vol 39 (21) ◽  
pp. n/a-n/a ◽  
Author(s):  
K. M. Meiners ◽  
M. Vancoppenolle ◽  
S. Thanassekos ◽  
G. S. Dieckmann ◽  
D. N. Thomas ◽  
...  
Keyword(s):  
Sea Ice ◽  
Ice Core ◽  

Polar Biology ◽  
2004 ◽  
Vol 28 (4) ◽  
pp. 276-283 ◽  
Author(s):  
Mats A. Granskog ◽  
Hermanni Kaartokallio ◽  
Harri Kuosa ◽  
David N. Thomas ◽  
Jens Ehn ◽  
...  

2018 ◽  
Vol 14 (7) ◽  
pp. 1067-1078 ◽  
Author(s):  
Minjie Zheng ◽  
Jesper Sjolte ◽  
Florian Adolphi ◽  
Bo Møllesøe Vinther ◽  
Hans Christian Steen-Larsen ◽  
...  

Abstract. Analyzing seasonally resolved δ18O ice core data can aid the interpretation of the climate information in ice cores, also providing insights into factors governing the δ18O signal that cannot be deciphered by investigating the annual δ18O data only. However, the seasonal isotope signal has not yet been investigated in northern Greenland, e.g., at the NEEM (North Greenland Eemian Ice Drilling) ice core drill site. Here, we analyze seasonally resolved δ18O data from four shallow NEEM ice cores covering the last 150 years. Based on correlation analysis with observed temperature, we attribute about 70 and 30 % of annual accumulation to summer and winter, respectively. The NEEM summer δ18O signal correlates strongly with summer western Greenland coastal temperature and with the first principal component (PC1) of summer δ18O from multiple seasonally resolved ice cores from central/southern Greenland. However, there are no significant correlations between NEEM winter δ18O data and western Greenland coastal winter temperature or southern/central Greenland winter δ18O PC1. The stronger correlation with temperature during summer and the dominance of summer precipitation skew the annual δ18O signal in NEEM. The strong footprint of temperature in NEEM summer δ18O record also suggests that the summer δ18O record rather than the winter δ18O record is a better temperature proxy at the NEEM site. Despite the dominant signal of the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO) in the central–southern ice core data, both NAO and AMO exert weak influences on NEEM seasonal δ18O variations. The NEEM seasonal δ18O is found to be highly correlated with Baffin Bay sea ice concentration (SIC) in the satellite observation period (1979–2004), suggesting a connection of the sea ice extent with δ18O at NEEM. NEEM winter δ18O significantly correlates with SIC even for the period prior to satellite observation (1901–1978). The NEEM winter δ18O may reflect sea ice variations of Baffin Bay rather than temperature itself. This study shows that seasonally resolved δ18O records, especially for sites with a seasonal precipitation bias such as NEEM, provide a better understanding of how changing air temperature and circulation patterns are associated with the variability in the δ18O records.


2020 ◽  
pp. 1-11
Author(s):  
Guanghua Hao ◽  
Roberta Pirazzini ◽  
Qinghua Yang ◽  
Zhongxiang Tian ◽  
Changwei Liu

Abstract The surface spectral albedo was measured over coastal landfast sea ice in Prydz Bay (off Zhongshan Station), East Antarctica from 5 October to 26 November of 2016. The mean albedo decreased from late-spring to early-summer, mainly responding to the change in surface conditions from dry (phase I) to wet (phase II). The evolution of the albedo was strongly influenced by the surface conditions, with alternation of frequent snowfall events and katabatic wind that induce snow blowing at the surface. The two phases and day-to-day albedo variability were more pronounced in the near-infrared albedo wavelengths than in the visible ones, as the near-infrared photons are more sensitive to snow metamorphism, and to changes in the uppermost millimeters and water content of the surface. The albedo diurnal cycle during clear sky conditions was asymmetric with respect to noon, decreasing from morning to evening over full and patchy snow cover, and decreasing more rapidly in the morning over bare ice. We conclude that snow and ice metamorphism and surface melting dominated over the solar elevation angle dependency in shaping the albedo evolution. However, we realize that more detailed surface observations are needed to clarify and quantify the role of the various surface processes.


2010 ◽  
Vol 29 (1-2) ◽  
pp. 296-302 ◽  
Author(s):  
Regine Röthlisberger ◽  
Xavier Crosta ◽  
Nerilie J. Abram ◽  
Leanne Armand ◽  
Eric W. Wolff

2019 ◽  
Vol 116 (10) ◽  
pp. 4099-4104 ◽  
Author(s):  
Louise C. Sime ◽  
Peter O. Hopcroft ◽  
Rachael H. Rhodes

Greenland ice cores provide excellent evidence of past abrupt climate changes. However, there is no universally accepted theory of how and why these Dansgaard–Oeschger (DO) events occur. Several mechanisms have been proposed to explain DO events, including sea ice, ice shelf buildup, ice sheets, atmospheric circulation, and meltwater changes. DO event temperature reconstructions depend on the stable water isotope (δ18O) and nitrogen isotope measurements from Greenland ice cores: interpretation of these measurements holds the key to understanding the nature of DO events. Here, we demonstrate the primary importance of sea ice as a control on Greenland ice coreδ18O: 95% of the variability inδ18O in southern Greenland is explained by DO event sea ice changes. Our suite of DO events, simulated using a general circulation model, accurately captures the amplitude ofδ18O enrichment during the abrupt DO event onsets. Simulated geographical variability is broadly consistent with available ice core evidence. We find an hitherto unknown sensitivity of theδ18O paleothermometer to the magnitude of DO event temperature increase: the change inδ18O per Kelvin temperature increase reduces with DO event amplitude. We show that this effect is controlled by precipitation seasonality.


Tellus B ◽  
1987 ◽  
Vol 39B (1-2) ◽  
pp. 140-154 ◽  
Author(s):  
U. SIEGENTHALER ◽  
H. OESCHGER
Keyword(s):  
Ice Core ◽  

2004 ◽  
Vol 39 ◽  
pp. 540-544 ◽  
Author(s):  
Barbara T. Smith ◽  
Tas D. Van Ommen ◽  
Mark A. J. Curran

AbstractMethanesulphonic acid (MSA) is an important trace-ion constituent in ice cores, with connections to biological activity and sea-ice distribution. Post-depositional movement of MSA has been documented in firn, and this study investigates movement in solid ice by measuring variations in MSA distribution across several horizontal sections from an ice core after 14.5 years storage. The core used is from below the bubble close-off depth at Dome Summit South, Law Dome, East Antarctica. MSA concentration was studied at 3 and 0.5 cm resolution across the core widths. Its distribution was uniform through the core centres, but the outer 3 cm showed gradients in concentrations down to less than half of the central value at the core edge. This effect is consistent with diffusion to the surrounding air during its 14.5 year storage. The diffusion coefficient is calculated to be 2 ×10–13 m2 s–1, and the implications for the diffusion mechanism are discussed.


2016 ◽  
Vol 97 (1) ◽  
pp. 111-121 ◽  
Author(s):  
M. N. Raphael ◽  
G. J. Marshall ◽  
J. Turner ◽  
R. L. Fogt ◽  
D. Schneider ◽  
...  

Abstract The Amundsen Sea low (ASL) is a climatological low pressure center that exerts considerable influence on the climate of West Antarctica. Its potential to explain important recent changes in Antarctic climate, for example, in temperature and sea ice extent, means that it has become the focus of an increasing number of studies. Here, the authors summarize the current understanding of the ASL, using reanalysis datasets to analyze recent variability and trends, as well as ice-core chemistry and climate model projections, to examine past and future changes in the ASL, respectively. The ASL has deepened in recent decades, affecting the climate through its influence on the regional meridional wind field, which controls the advection of moisture and heat into the continent. Deepening of the ASL in spring is consistent with observed West Antarctic warming and greater sea ice extent in the Ross Sea. Climate model simulations for recent decades indicate that this deepening is mediated by tropical variability while climate model projections through the twenty-first century suggest that the ASL will deepen in some seasons in response to greenhouse gas concentration increases.


Sign in / Sign up

Export Citation Format

Share Document