scholarly journals The Impact of Peatland Restoration on Local Climate: Restoration of a Cool Humid Island

2019 ◽  
Vol 124 (6) ◽  
pp. 1696-1713 ◽  
Author(s):  
Fred Worrall ◽  
Ian M. Boothroyd ◽  
Rosie L. Gardner ◽  
Nicholas J. K. Howden ◽  
Tim P. Burt ◽  
...  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Caroline Ward ◽  
Lindsay C. Stringer ◽  
Eleanor Warren-Thomas ◽  
Fahmuddin Agus ◽  
Merry Crowson ◽  
...  

AbstractThe Indonesian government committed to restoring over 2 million ha of degraded peatland by the end of 2020, mainly to reduce peat fires and greenhouse gas emissions. Although it is unlikely the government will meet this target, restoration projects are still underway. One restoration strategy involves blocking peatland drainage canals, but the consequences of this for smallholder farmers whose livelihoods are dependent on agriculture are unclear. This paper investigates perceived impacts of canal blocks on smallholder farmers and identifies factors that affect their willingness to accept canal blocks on their land. We use data from 181 household questionnaires collected in 2018 across three villages in Jambi province, Sumatra. We found that the majority of respondents would accept canal blocks on their farms, perceiving that the blocks would have no impact on yields or farm access, and would decrease fire risk. Respondents who would not accept blocks on their farms were more likely to use canals to access their farms and perceive that canal blocks would decrease yields. The majority of farmers unwilling to accept canal blocks did not change their mind when provided with an option of a block that would allow boat travel. Our results improve understanding of why some smallholders may be unwilling to engage with peatland restoration. Further research is needed to understand the impact of canal blocks on smallholders’ yields. Engaging with stakeholders from the outset to understand farmers’ concerns, and perceptions is key if the government is to succeed in meeting its peatland restoration target and to ensure that the costs and benefits of restoration are evenly shared between local stakeholders and other actors.


Biologia ◽  
2011 ◽  
Vol 66 (5) ◽  
Author(s):  
Jiří Dostálek ◽  
Tomáš Frantík

AbstractThe extreme habitats of dry grasslands are suitable for investigations of the response of vegetation to local climate changes. The impact of weather variability on the dynamics of a plant community in a dry grassland was studied. Correlations were found between different functional groups of species and individual species and weather variability. During a 9-year study in five nature reserves in Prague (Czech Republic), the following responses of dry grassland vegetation to weather conditions were observed: (i) wetter conditions, especially in the winter, affected the dominance and species richness of perennial grass species and the decline of rosette plants; (ii) the year-to-year higher temperatures in the winter produced a decline in the dominance of short graminoids and creeping forbs; (iii) spring drought adversely impacted the overall abundance, especially the abundance of dicotyledonous species, and the species richness. However, these relationships may be manifested in different ways in different locations, and in some cases the vegetation of different locations may respond to weather conditions in opposite manners.


Author(s):  
Niayesh Afshordi ◽  
Benjamin Holder ◽  
Mohammad Bahrami ◽  
Daniel Lichtblau

The SARS-CoV-2 pandemic has caused significant mortality and morbidity worldwide, sparing almost no community. As the disease will likely remain a threat for years to come, an understanding of the precise influences of human demographics and settlement, as well as the dynamic factors of climate, susceptible depletion, and intervention, on the spread of localized epidemics will be vital for mounting an effective response. We consider the entire set of local epidemics in the United States; a broad selection of demographic, population density, and climate factors; and local mobility data, tracking social distancing interventions, to determine the key factors driving the spread and containment of the virus. Assuming first a linear model for the rate of exponential growth (or decay) in cases/mortality, we find that population-weighted density, humidity, and median age dominate the dynamics of growth and decline, once interventions are accounted for. A focus on distinct metropolitan areas suggests that some locales benefited from the timing of a nearly simultaneous nationwide shutdown, and/or the regional climate conditions in mid-March; while others suffered significant outbreaks prior to intervention. Using a first-principles model of the infection spread, we then develop predictions for the impact of the relaxation of social distancing and local climate conditions. A few regions, where a significant fraction of the population was infected, show evidence that the epidemic has partially resolved via depletion of the susceptible population (i.e., “herd immunity”), while most regions in the United States remain overwhelmingly susceptible. These results will be important for optimal management of intervention strategies, which can be facilitated using our online dashboard.


2021 ◽  
Author(s):  
Ge Cheng ◽  
David Grawe ◽  
K. Heinke Schlünzen

<p>Nudging is a simple method that aims to dynamically adjust the model toward the observations by including an additional feedback term in the model governing equation. This method is widely applied in data assimilation due to its simple implementation and reasonable model results. The basic concept of nudging is similar to that of urban canopy parameterization, in which additional terms are usually added in the conservation equations of momentum and energy aiming to simulate the canopy effects. However, few studies have investigated the implementation of nudging methods in urban canopy parameterizations. In this study we developed a multi-layer urban canopy parameterization (UCP) by using a nudging approach to represent the impacts of vegetated urban canopies on temperatures and winds in mesoscale models.</p><p>The difficulty of developing UCP by using a nudging method lies in defining appropriate values for the nudging coefficients and the forcing fields (e.g. indoor temperature fields for temperature nudging). To determine nudging coefficients, we use three major urban canopy morphological parameters: building height, frontal area density and building density. The ranges of these parameters are taken from the values for the Local Climate Zones datasets, in our case for the city of Hamburg. The UCP is employed in the three -dimensional atmospheric mesoscale model METRAS. Results show that this UCP can well simulate wind-blocking effects induced from obstacles as buildings and trees and urban heat island phenomenon for cities. Thus, nudging is an efficient and effective method that can be used for urban canopy parameterizations. However, as well known for nudging, it is not conserving energy. Therefore, we investigated the energy loss by tracking the reduced kinetic energy and internal energy. The UCP and model results will be presented.</p>


2016 ◽  
Vol 31 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Angela B. Kuriata-Potasznik ◽  
Sławomir Szymczyk

AbstractIt is predicted that climate change will result in the diminution of water resources available both on global and regional scales. Local climate change is harder to observe and therefore, while counteracting its effects, it seems advisable to undertake studies on pertinent regional and local conditions. In this research, our aim was to assess the impact of a river and its catchment on fluctuations in the water availability in a natural lake which belongs to a post-glacial river and lake system. River and lake systems behave most often like a single interacting hydrological unit, and the intensity of water exchange in these systems is quite high, which may cause temporary water losses. This study showed that water in the analyzed river and lake system was exchanged approx. every 66 days, which resulted from the total (horizontal and vertical) water exchange. Also, the management of a catchment area seems to play a crucial role in the local water availability, as demonstrated by this research, where water retention was favoured by wooded and marshy areas. More intensive water retention was observed in a catchment dominated by forests, pastures and wetlands. Wasteland and large differences in the land elevation in the tested catchment are unfavourable to water retention because they intensify soil evaporation and accelerate the water run-off outside of the catchment. Among the actions which should be undertaken in order to counteract water deficiencies in catchment areas, rational use and management of the land resources in the catchment are most often mentioned.


2021 ◽  
Author(s):  
Arianna Valmassoi ◽  
Jan D. Keller ◽  
Rita Glowienka-Hense

<p>Understanding the impact of urban environments on the local climate has been a crucial topic in recent years. Changes in the cities structure are expected due to the ongoing urbanization trends and climate-aware mitigation planning. These policy implementations are expected to affect the local urban surface and its interaction with the climate system. Here, we are interested in investigating these impacts coupled to a heatwave condition, due to its adverse impact on human health. </p> <p>In the presented work, we investigate the multi-model response to different urbanization and urban greening scenarios. We employ two NWP models at the 2.1 km convection-permitting resolution: ICON-LAM (ICOsahedral Nonhydrostatic Model in Limited Area Mode)  and WRF-ARW (Weather Research and Forecasting Model). Our one-month experiments comprise the 2019 ``record-breaking'' heatwave in Western Europe and they are all a downscaling of ICON-EU (6.5km resolution).</p> <p>The urban policy scenarios are built from the CORINE land use dataset and they include two urbanization and two urban greening settings, for each model. Urbanization is represented as a sprawl of the main urban areas within the domain towards the natural surrounding areas. To increase the urban green fraction within the main cities, we increase the number of green areas within each city.</p> <p>Our analysis shows the multi-model comparison of the effects of the mentioned urban policies on the urban heat island (UHI) under heatwave conditions. Further, we quantify the effects of urban greening as an efficient tool to mitigate expected climate impacts in terms of the Discomfort Index, and not just for the UHI.<br />Further, we evaluate the similarities and dissimilarities between the two models in terms of multiple correlation decomposition accordingly to Glowienka-Hense et al. 2020.</p>


2021 ◽  
Author(s):  
Oscar Brousse ◽  
Jonas Van de Walle ◽  
Matthias Demuzere ◽  
Alberto Martilli ◽  
Nicole van Lipzig ◽  
...  

<p>In order to build resilient cities in face of climate change in Sub-Saharan Africa, much is to be done to understand the impact of rapid and uncontrolled urbanization on the local climate in the region. Recent efforts by Brousse et al. (2019, 2020) demonstrated that using generic urban parameter information  derived out of Local Climate Zones (LCZ ; Stewart and Oke, 2012) maps created through the World Urban Database and Access Portal Tool framework (Ching et al. 2018) may be used to model the impact of Sub-Saharan African cities on their local climate – using the case of Kampala, the capital city of Uganda. These studies showed that despite the characteristic data scarcity on urban typologies that is present in Sub-Saharan Africa, LCZ could be used as a solution for modelling and studying the urban climates in the region.</p><p>Yet these conclusions were only obtained through the use of the bulk-level urban canopy model TERRA_URB, embedded in the COSMO-CLM regional climate model. We therefore test the applicability of a more complex urban canopy models – the Building Effect Parameterization coupled to the Building Energy Model (BEP-BEM) – over the region. To do so, we focus on short periods with specific meteorological conditions during the dry season spanning from December 2017 to February 2018. These are obtained through a k-means clustering over hourly weather measurements given by the automatic weather station located at the Makerere University, in the city-center of Kampala. Wind direction and speed, 2-meter air temperature, incoming short-wave radiation, precipitation, daily temperature range, 2-meter air relative humidity and near-surface pressure are used to depict 5 weather typologies (ie. clusters) during the dry season. We chose to keep only periods with 5 consecutive days of one weather typology, which results in three 5-day periods of distinct typology. We then run the model for these periods and evaluate its outputs against the state-of-the-art simulation by Brousse et al. (2020) as well as in-situ and satellite observations for certain meteorological variables. After that, we show the effect of the recent urbanization on the local climate for each of those three periods and relate it to the variability in urban heat.</p><p>This study is the first to model a tropical African city at 1 km horizontal resolution using the BEP-BEM model embedded in WRF. The latter could have major implications as more complex urban canopy models coupled to building energy models could shed light on the impact of the built environment on the livability of indoor and outdoor environments in these cities. Furthermore, insights could indeed be gained on the contribution of air conditioning heat fluxes to outdoor temperatures and the energetic consumption needed to keep indoor environments at an optimal temperature. Additionally, by resolving the urban environment in three dimensions, BEP-BEM could help increase our understanding of how specific urban planning and architectural adaptation strategies (like green or cool roofs, roof top solar panel, new building materials, urban greening etc.) may increase the citizens’ thermal comfort and reduce negative health impacts under specific weather conditions.</p>


2019 ◽  
Vol 39 ◽  
pp. 9-17 ◽  
Author(s):  
Mehdi Aminipouri ◽  
Anders Jensen Knudby ◽  
E. Scott Krayenhoff ◽  
Kirsten Zickfeld ◽  
Ariane Middel

2003 ◽  
Vol 59 (2) ◽  
pp. 160-171 ◽  
Author(s):  
Felisa A. Smith ◽  
Julio L. Betancourt

AbstractAnimals respond to climatic change by adapting or by altering distributional patterns. How an animal responds is influenced by where it is positioned within its geographic range; the probability of extirpation is increased near range boundaries. Here, we examine the impact of Holocene climatic fluctuations on a small mammalian herbivore, the bushy-tailed woodrat (Neotoma cinerea), at five locations within south central Idaho and northwestern Utah. Previous work demonstrated that woodrats adapt to temperature shifts by altering body size. We focus here on the relationship between body mass, temperature, and location within the geographic range. Body mass is estimated by measuring fossil fecal pellets, a technique validated in earlier work. Overall, we find the predicted phenotypic response to climate change: animals were larger during cold periods, and smaller during warmer episodes. However, we also identify several time periods when changes in environmental temperature exceeded the adaptive flexibility of N. cinerea. A smaller-bodied species, the desert woodrat (N. lepida) apparently invaded lower elevation sites during the mid-Holocene, despite being behaviorally and physically subordinate to N. cinerea. Analysis of contemporary patterns of body size and thermal tolerances for both woodrat species suggests this was because of the greater heat tolerance of N. lepida. The robust spatial relationship between contemporary body size and ambient temperature is used as a proxy to reconstruct local climate during the Holocene.


2012 ◽  
Vol 51 (8) ◽  
pp. 1441-1454 ◽  
Author(s):  
Sachiho A. Adachi ◽  
Fujio Kimura ◽  
Hiroyuki Kusaka ◽  
Tomoshige Inoue ◽  
Hiroaki Ueda

AbstractIn this study, the impact of global climate change and anticipated urbanization over the next 70 years is estimated with regard to the summertime local climate in the Tokyo metropolitan area (TMA), whose population is already near its peak now. First, five climate projections for the 2070s calculated with the aid of general circulation models (GCMs) are used for dynamical downscaling experiments to evaluate the impact of global climate changes using a regional climate model. Second, the sensitivity of future urbanization until the 2070s is examined assuming a simple developing urban scenario for the TMA. These two sensitivity analyses indicate that the increase in the surface air temperature from the 1990s to the 2070s is about 2.0°C as a result of global climate changes under the A1B scenario in the Intergovernmental Panel on Climate Change’s Special Report on Emissions Scenarios (SRES) and about 0.5°C as a result of urbanization. Considering the current urban heat island intensity (UHII) of 1.0°C, the possible UHII in the future reaches an average of 1.5°C in the TMA. This means that the mitigation of the UHII should be one of the ways to adapt to a local temperature increase caused by changes in the future global climate. In addition, the estimation of temperature increase due to global climate change has an uncertainty of about 2.0°C depending on the GCM projection, suggesting that the local climate should be projected on the basis of multiple GCM projections.


Sign in / Sign up

Export Citation Format

Share Document