scholarly journals Dilatancy toughening of shear cracks and implications for slow rupture propagation

Author(s):  
Nicolas Brantut
2021 ◽  
Vol 147 ◽  
pp. 106811
Author(s):  
Chaofan Yao ◽  
Jiro Takemura ◽  
Gaoyu Ma ◽  
Cong Dai ◽  
Zheli An

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Sharadha Sathiakumar ◽  
Sylvain Barbot

AbstractThe Himalayan megathrust accommodates most of the relative convergence between the Indian and Eurasian plates, producing cycles of blind and surface-breaking ruptures. Elucidating the mechanics of down-dip segmentation of the seismogenic zone is key to better determine seismic hazards in the region. However, the geometry of the Himalayan megathrust and its impact on seismicity remains controversial. Here, we develop seismic cycle simulations tuned to the seismo-geodetic data of the 2015 Mw 7.8 Gorkha, Nepal earthquake to better constrain the megathrust geometry and its role on the demarcation of partial ruptures. We show that a ramp in the middle of the seismogenic zone is required to explain the termination of the coseismic rupture and the source mechanism of up-dip aftershocks consistently. Alternative models with a wide décollement can only explain the mainshock. Fault structural complexities likely play an important role in modulating the seismic cycle, in particular, the distribution of rupture sizes. Fault bends are capable of both obstructing rupture propagation as well as behave as a source of seismicity and rupture initiation.


Author(s):  
Xiaojie Yang ◽  
Weiran Zhang ◽  
Dongjie Xue ◽  
Zhigang Tao ◽  
Sida Xi

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2108
Author(s):  
Guanlin Liu ◽  
Youliang Chen ◽  
Xi Du ◽  
Peng Xiao ◽  
Shaoming Liao ◽  
...  

The cracking of rock mass under compression is the main factor causing structural failure. Therefore, it is very crucial to establish a rock damage evolution model to investigate the crack development process and reveal the failure and instability mechanism of rock under load. In this study, four different strength types of rock samples from hard to weak were selected, and the Voronoi method was used to perform and analyze uniaxial compression tests and the fracture process. The change characteristics of the number, angle, and length of cracks in the process of rock failure and instability were obtained. Three laws of crack development, damage evolution, and energy evolution were analyzed. The main conclusions are as follows. (1) The rock’s initial damage is mainly caused by tensile cracks, and the rapid growth of shear cracks after exceeding the damage threshold indicates that the rock is about to be a failure. The development of micro-cracks is mainly concentrated on the diagonal of the rock sample and gradually expands to the middle along the two ends of the diagonal. (2) The identification point of failure precursor information in Acoustic Emission (AE) can effectively provide a safety warning for the development of rock fracture. (3) The uniaxial compression damage constitutive equation of the rock sample with the crack length as the parameter is established, which can better reflect the damage evolution characteristics of the rock sample. (4) Tensile crack requires low energy consumption and energy dispersion is not concentrated. The damage is not apparent. Shear cracks are concentrated and consume a large amount of energy, resulting in strong damage and making it easy to form macro-cracks.


Author(s):  
Barış Erdil ◽  
Mücip Tapan ◽  
İsmail Akkaya ◽  
Fuat Korkut

The October 23, 2011 (Mw = 7.2) and November 9, 2011 (Mw = 5.6) earthquakes increased the damage in the minaret of Van Ulu Mosque, an important historical masonry structure built with solid bricks in Eastern Turkey, resulting in significant shear cracks. It was found that since the door and window openings are not symmetrically placed, they result in unsymmetrical stiffness distribution. The contribution of staircase and the core on stiffness is ignorable but its effect on the mass is significant. The pulpit with chamfered corner results in unsymmetrical transverse displacements. Brace wall improves the stiffness however contributes to the unsymmetrical behaviour considerably. The reason for the diagonal cracks can be attributed to the unsymmetrical brace wall and the chamfered pulpit but the effect of brace wall is more pronounced. After introducing the cracks, a new model was created and calibrated according to the results of Operational Modal Analysis. Diagonal cracks were found to be likely to develop under earthquake loading. Drifts are observed to increase significantly upon the introduction of the cracks.


2004 ◽  
Vol 4 (1) ◽  
pp. 147-152 ◽  
Author(s):  
D. N. Petley

Abstract. Forecasting the occurrence of large, catastrophic slope failures remains very problematic. It is clear that in order advance this field a greater understanding is needed of the processes through which failure occurs. In particular, there is a need to comprehend the processes through which a rupture develops and propagates through the slope, and the nature of the inter-relationship between the stress and strain states of the landslide mass. To this end, a detailed analysis has been undertaken of the movement records for the Selborme Cutting slope failure, in which failure was deliberately triggered through pore pressure elevation. The data demonstrate that it is possible to determine the processes occurring in the basal region of the landslide, and thus controlling the movement of the mass, from the surface movement patterns. In particular, it is clear that the process of rupture development and propagation has a unique signature, allowing the development of the rupture to be traced from detailed surface monitoring. For landslides undergoing first time failure through rupture propagation, this allows the prediction of the time of failure as per the "Saito" approach. It is shown that for such predictions to be reliable, data from a number of points across the landslide mass are needed. Interestingly, due to the complex stress regime in that region, data from the crown may not be appropriate for failure prediction. Based upon these results, the application of new techniques for the detailed assessment of spatial patterns of the development of strain may potentially allow a new insight into the development of rupture surfaces and may ultimately permit forecasting of the temporal occurrence of failure.


Sign in / Sign up

Export Citation Format

Share Document