The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer

1994 ◽  
Vol 30 (2) ◽  
pp. 421-433 ◽  
Author(s):  
Thomas E. Reilly ◽  
L. Niel Plummer ◽  
Patrick J. Phillips ◽  
Eurybiades Busenberg
1992 ◽  
Vol 23 (1) ◽  
pp. 1-12
Author(s):  
Ram Raj Vinda ◽  
Raja Ram Yadava ◽  
Naveen Kumar

Analytical solutions converging rapidly at large and small values of times have been obtained for two mathematical models which describe the concentration distribution of a non reactive pollutant from a point source against the flow in a horizontal cross-section of a finite saturated shallow aquifer possessing uniform horizontal groundwater flow. Zero concentration or the conditions in which the flux across the extreme boundaries are proportional to the respective flow components are applied. The effects of flow and dispersion on concentration distribution are also discussed.


2018 ◽  
Vol 42 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Shahpara Sheikh Dola ◽  
Khairul Bahsar ◽  
Mazeda Islam ◽  
Md Mizanur Rahman Sarker

Attempt has been made to find the relationship between the basin groundwater flow and the current water chemistry of south-western part of Bangladesh considering their lithological distribution and aquifer condition. The correlation of water chemistry and basin groundwater flow is depicted in the conceptual model. The water-types of shallow groundwater are predominantly Mg-Na-HCO3 and Ca- Mg-Na-HCO3 type. In the deep aquifer of upper delta plain is predominately Na-Cl, Ca-HCO3 and Mg- HCO3 type. In the lower delta plain Na-Cl type of water mainly occurs in the shallow aquifer and occasionally Ca-HCO3, Ca-Mg-Na-HCO3 and Mg-HCO3 type may also occur in shallow aquifer of the eastern part of lower delta plain which could have originated from the recent recharge of rain water. Na- Cl type water is also found in the deep aquifer of lower delta plain. The origin of Na-Cl type water in the deep aquifer of lower delta part might be connate water or present day sea water intrusion. Fresh water occurring in the deep aquifer in the lower delta area is mostly of Mg-Ca-HCO3 and Na-HClO3 types. This type of water originate from intermediate or deep basin flow from the northern part of Bangladesh. The probable source of deep groundwater is Holocene marine transgression (Khan et al. 2000) occurred in 3000–7000 cal years BP and the deep groundwater of Upper Delta plain and Lower Delta plain is clearly influenced by deep basin flow coming from north part of BangladeshJournal of Bangladesh Academy of Sciences, Vol. 42, No. 1, 41-54, 2018


2020 ◽  
pp. 269-272
Author(s):  
R. Nativ ◽  
G. Günay ◽  
L. Tezcan ◽  
H. Hötzl ◽  
B. Reichert ◽  
...  

2020 ◽  
Vol 24 (1) ◽  
pp. 249-267 ◽  
Author(s):  
Cornelia Wilske ◽  
Axel Suckow ◽  
Ulf Mallast ◽  
Christiane Meier ◽  
Silke Merchel ◽  
...  

Abstract. Despite being the main drinking water resource for over 5 million people, the water balance of the Eastern Mountain Aquifer system on the western side of the Dead Sea is poorly understood. The regional aquifer consists of fractured and karstified limestone – aquifers of Cretaceous age, and it can be separated into a Cenomanian aquifer (upper aquifer) and Albian aquifer (lower aquifer). Both aquifers are exposed along the mountain ridge around Jerusalem, which is the main recharge area. From here, the recharged groundwater flows in a highly karstified aquifer system towards the east and discharges in springs in the lower Jordan Valley and Dead Sea region. We investigated the Eastern Mountain Aquifer system for groundwater flow, groundwater age and potential mixtures, and groundwater recharge. We combined 36Cl ∕ Cl, tritium, and the anthropogenic gases SF6, CFC-12 (chlorofluorocarbon) and CFC-11, while using CFC-113 as “dating” tracers to estimate the young water components inside the Eastern Mountain Aquifer system. By application of lumped parameter models, we verified young groundwater components from the last 10 to 30 years and an admixture of a groundwater component older than about 70 years. Concentrations of nitrate, simazine (pesticide), acesulfame K (ACE-K; artificial sweetener) and naproxen (NAP; drug) in the groundwater were further indications of infiltration during the last 30 years. The combination of multiple environmental tracers and lumped parameter modelling helped to understand the groundwater age distribution and to estimate recharge despite scarce data in this very complex hydrogeological setting. Our groundwater recharge rates support groundwater management of this politically difficult area and can be used to inform and calibrate ongoing groundwater flow models.


Author(s):  
Enzo Cuiuli

The S. Eufemia Lamezia plain, located in central Calabria, is characterized by the presence of a multi-layered aquifer. In particular, it was studied the intermediate artesian aquifer, content in the Pliocene sands and sandstones. The collection of new lithostratigraphic data, related to drilling for water supplies, allowed to draw the map of the top of intermediate artesian aquifer underlying in the study area. The top surface of sands and sandstones map, presented here, seems to confirm the structural-geological data of the surface showing, also in depth, the conditioning of tectonics on the study area and on the groundwater flow. The analysis of the selected stratigraphic data shows that the studied aquifer is constituted by Pliocene deposits of sand and sandstones, confined to the top by Pliocene clay. Therefore locally hydraulic connections with the shallow aquifer for leackage phenomena are possible. The supply of the studied aquifer happens mainly for lateral recharge because the clay horizon that borders with the top of the aquifer prevents direct transfer of rainfall recharge. However, a reduced recharge rate is due to the meteoric recharge, which is possible in limited parts of the territory to the east of the study area and over. Therefore, this study aims to implement the knowledge of the groundwater flow of S. Eufemia plain by returning the top intermediate confined aquifer map which, is little studied but strongly exploited because, respect to the shallow aquifer, is more productive and more protected by potential contamination due to the presence of the aquiclude/aquitard which isolates it by the top.


2014 ◽  
Vol 11 (8) ◽  
pp. 9671-9713
Author(s):  
A. J. Zurek ◽  
S. Witczak ◽  
M. Dulinski ◽  
P. Wachniew ◽  
K. Rozanski ◽  
...  

Abstract. A dedicated study was launched in 2010 with the main aim to better understand the functioning of groundwater dependent terrestrial ecosystem (GDTE) located in southern Poland. The GDTE consists of a valuable forest stand (Niepolomice Forest) and associated wetland (Wielkie Bloto fen). A wide range of tools (environmental tracers, geochemistry, geophysics, 3-D flow and transport modeling) was used. The research was conducted along three major directions: (i) quantification of the dynamics of groundwater flow in various parts of the aquifer associated with GDTE, (ii) quantification of the degree of interaction between the GDTE and the aquifer, and (iii) 3-D modeling of groundwater flow in the vicinity of the studied GDTE and quantification of possible impact of enhanced exploitation of the aquifer on the status of GDTE. Environmental tracer data (tritium, stable isotopes of water) strongly suggest that upward leakage of the aquifer contributes significantly to the present water balance of the studied wetland and associated forest. Physico-chemical parameters of water (pH, conductivity, Na / Cl ratio) confirm this notion. Model runs indicate that prolonged groundwater abstraction through the newly-established network of water supply wells, conducted at maximum permitted capacity (ca. 10 000 m3 d−1), may trigger drastic changes in the ecosystem functioning, eventually leading to its degradation.


2008 ◽  
Vol 13 (11) ◽  
pp. 1037-1048 ◽  
Author(s):  
L. Troldborg ◽  
K. H. Jensen ◽  
P. Engesgaard ◽  
J. C. Refsgaard ◽  
K. Hinsby

Sign in / Sign up

Export Citation Format

Share Document