Global-mean temperature and sea level consequences of greenhouse gas concentration stabilization

1995 ◽  
Vol 22 (1) ◽  
pp. 45-48 ◽  
Author(s):  
T. M. L. Wigley
2020 ◽  
Vol 12 (9) ◽  
pp. 3737
Author(s):  
Osamu Nishiura ◽  
Makoto Tamura ◽  
Shinichiro Fujimori ◽  
Kiyoshi Takahashi ◽  
Junya Takakura ◽  
...  

Coastal areas provide important services and functions for social and economic activities. Damage due to sea level rise (SLR) is one of the serious problems anticipated and caused by climate change. In this study, we assess the global economic impact of inundation due to SLR by using a computable general equilibrium (CGE) model that incorporates detailed coastal damage information. The scenario analysis considers multiple general circulation models, socioeconomic assumptions, and stringency of climate change mitigation measures. We found that the global household consumption loss proportion will be 0.045%, with a range of 0.027−0.066%, in 2100. Socioeconomic assumptions cause a difference in the loss proportion of up to 0.035% without greenhouse gas (GHG) emissions mitigation, the so-called baseline scenarios. The range of the loss proportion among GHG emission scenarios is smaller than the differences among the socioeconomic assumptions. We also observed large regional variations and, in particular, the consumption losses in low-income countries are, relatively speaking, larger than those in high-income countries. These results indicate that, even if we succeed in stabilizing the global mean temperature increase below 2 °C, economic losses caused by SLR will inevitably happen to some extent, which may imply that keeping the global mean temperature increase below 1.5 °C would be worthwhile to consider.


2016 ◽  
Vol 7 (2) ◽  
pp. 327-351 ◽  
Author(s):  
Carl-Friedrich Schleussner ◽  
Tabea K. Lissner ◽  
Erich M. Fischer ◽  
Jan Wohland ◽  
Mahé Perrette ◽  
...  

Abstract. Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. The 2015 Paris Agreement includes a two-headed temperature goal: "holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C". Despite the prominence of these two temperature limits, a comprehensive overview of the differences in climate impacts at these levels is still missing. Here we provide an assessment of key impacts of climate change at warming levels of 1.5 °C and 2 °C, including extreme weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss. Our results reveal substantial differences in impacts between a 1.5 °C and 2 °C warming that are highly relevant for the assessment of dangerous anthropogenic interference with the climate system. For heat-related extremes, the additional 0.5 °C increase in global-mean temperature marks the difference between events at the upper limit of present-day natural variability and a new climate regime, particularly in tropical regions. Similarly, this warming difference is likely to be decisive for the future of tropical coral reefs. In a scenario with an end-of-century warming of 2 °C, virtually all tropical coral reefs are projected to be at risk of severe degradation due to temperature-induced bleaching from 2050 onwards. This fraction is reduced to about 90 % in 2050 and projected to decline to 70 % by 2100 for a 1.5 °C scenario. Analyses of precipitation-related impacts reveal distinct regional differences and hot-spots of change emerge. Regional reduction in median water availability for the Mediterranean is found to nearly double from 9 % to 17 % between 1.5 °C and 2 °C, and the projected lengthening of regional dry spells increases from 7 to 11 %. Projections for agricultural yields differ between crop types as well as world regions. While some (in particular high-latitude) regions may benefit, tropical regions like West Africa, South-East Asia, as well as Central and northern South America are projected to face substantial local yield reductions, particularly for wheat and maize. Best estimate sea-level rise projections based on two illustrative scenarios indicate a 50 cm rise by 2100 relative to year 2000-levels for a 2 °C scenario, and about 10 cm lower levels for a 1.5 °C scenario. In a 1.5 °C scenario, the rate of sea-level rise in 2100 would be reduced by about 30 % compared to a 2 °C scenario. Our findings highlight the importance of regional differentiation to assess both future climate risks and different vulnerabilities to incremental increases in global-mean temperature. The article provides a consistent and comprehensive assessment of existing projections and a good basis for future work on refining our understanding of the difference between impacts at 1.5 °C and 2 °C warming.


2012 ◽  
Vol 4 (3) ◽  
pp. 212-229 ◽  
Author(s):  
K. Kvale ◽  
K. Zickfeld ◽  
T. Bruckner ◽  
K. J. Meissner ◽  
K. Tanaka ◽  
...  

Abstract Anthropogenic emissions of greenhouse gases could lead to undesirable effects on oceans in coming centuries. Drawing on recommendations published by the German Advisory Council on Global Change, levels of unacceptable global marine change (so-called guardrails) are defined in terms of global mean temperature, sea level rise, and ocean acidification. A global-mean climate model [the Aggregated Carbon Cycle, Atmospheric Chemistry and Climate Model (ACC2)] is coupled with an economic module [taken from the Dynamic Integrated Climate–Economy Model (DICE)] to conduct a cost-effectiveness analysis to derive CO2 emission pathways that both minimize abatement costs and are compatible with these guardrails. Additionally, the “tolerable windows approach” is used to calculate a range of CO2 emissions paths that obey the guardrails as well as a restriction on mitigation rate. Prospects of meeting the global mean temperature change guardrail (2° and 0.2°C decade−1 relative to preindustrial) depend strongly on assumed values for climate sensitivity: at climate sensitivities >3°C the guardrail cannot be attained under any CO2 emissions reduction strategy without mitigation of non-CO2 greenhouse gases. The ocean acidification guardrail (0.2 unit pH decline relative to preindustrial) is less restrictive than the absolute temperature guardrail at climate sensitivities >2.5°C but becomes more constraining at lower climate sensitivities. The sea level rise and rate of rise guardrails (1 m and 5 cm decade−1) are substantially less stringent for ice sheet sensitivities derived in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report, but they may already be committed to violation if ice sheet sensitivities consistent with semiempirical sea level rise projections are assumed.


2015 ◽  
Vol 6 (2) ◽  
pp. 2447-2505 ◽  
Author(s):  
C.-F. Schleussner ◽  
T. K. Lissner ◽  
E. M. Fischer ◽  
J. Wohland ◽  
M. Perrette ◽  
...  

Abstract. Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. Currently, two such levels are discussed in the context of the international climate negotiations as long-term global temperature goals: a below 2 °C and a 1.5 °C limit in global-mean temperature rise above pre-industrial levels. Despite the prominence of these two temperature limits, a comprehensive assessment of the differences in climate impacts at these levels is still missing. Here we provide an assessment of key impacts of climate change at warming levels of 1.5 °C and 2 °C, including extreme weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss. Our results reveal substantial differences in impacts between 1.5 °C and 2 °C. For heat-related extremes, the additional 0.5 °C increase in global-mean temperature marks the difference between events at the upper limit of present-day natural variability and a new climate regime, particularly in tropical regions. Similarly, this warming difference is likely to be decisive for the future of tropical coral reefs. In a scenario with an end-of-century warming of 2 °C, virtually all tropical coral reefs are projected to be at risk of severe degradation due to temperature induced bleaching from 2050 onwards. This fraction is reduced to about 90 % in 2050 and projected to decline to 70 % by 2100 for a 1.5 °C scenario. Analyses of precipitation-related impacts reveal distinct regional differences and several hot-spots of change emerge. Regional reduction in median water availability for the Mediterranean is found to nearly double from 9 to 17 % between 1.5 °C and 2 °C, and the projected lengthening of regional dry spells increases from 7 % longer to 11 %. Projections for agricultural yields differ between crop types as well as world regions. While some (in particular high-latitude) regions may benefit, tropical regions like West Africa, South-East Asia, as well as Central and Northern South America are projected to face local yield reductions, particularly for wheat and maize. Best estimate sea-level rise projections based on two illustrative scenarios indicate a 50 cm rise by 2100 relative to year 2000-levels under a 2 °C warming, which is about 10 cm lower for a 1.5 °C scenario. Our findings highlight the importance of regional differentiation to assess future climate risks as well as different vulnerabilities to incremental increases in global-mean temperature. The article provides a consistent and comprehensive assessment of existing projections and a solid foundation for future work on refining our understanding of warming-level dependent climate impacts.


2021 ◽  
pp. 228-248
Author(s):  
Eelco J. Rohling

This chapter considers processes we cannot reverse, at least in the short term: it is already too late. These are processes related to slow responses or feedbacks in the climate system, including ocean warming and sea-level rise, and they will continue to drive change whatever we do. As explained in the chapter, ocean warming operates on timescales of centuries and resulting changes in Earth’s major ice sheets take many centuries to millennia. Sea-level rise is caused by thermal expansion due to ocean warming and by reduction in the volume of land-based ice, due to global warming. Because of the timescales involved, the oceans will keep warming for centuries, dragging global mean temperature along with them, and sea level will also rise for many centuries to come. The chapter reviews the impacts of these processes, whose inevitability means that humanity has no choice but to adapt to them.


2020 ◽  
Author(s):  
Matthias Mengel ◽  
Simon Treu ◽  
Stefan Lange ◽  
Katja Frieler

Abstract. Climate has changed over the past century due to anthropogenic greenhouse gas emissions. In parallel, societies and their environment have evolved rapidly. To identify the impacts of historical climate change on human or natural systems, it is therefore necessary to separate the effect of different drivers. By definition this is done by comparing the observed situation to a counterfactual one in which climate change is absent and other drivers change according to observations. As such a counterfactual baseline cannot be observed it has to be estimated by process-based or empirical models. We here present ATTRICI (ATTRIbuting Climate Impacts), an approach to remove the signal of global warming from observational climate data to generate forcing data for the simulation of a counterfactual baseline of impact indicators. Our method identifies the interannual and annual cycle shifts that are correlated to global mean temperature change. We use quantile mapping to a baseline distribution that removes the global mean temperature related shifts to find counterfactual values for the observed daily climate data. Applied to each variable of two climate datasets, we produce two counterfactual datasets that are made available through the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) along with the original datasets. Our method preserves the internal variability of the observed data in the sense that observed (factual) and counterfactual data for a given day remain in the same quantile in their respective statistical distribution. That makes it possible to compare observed impact events and counterfactual impact events. Our approach adjusts for the long-term trends associated with global warming but does not address the attribution of climate change to anthropogenic greenhouse gas emissions.


2007 ◽  
Vol 20 (5) ◽  
pp. 843-855 ◽  
Author(s):  
J. A. Kettleborough ◽  
B. B. B. Booth ◽  
P. A. Stott ◽  
M. R. Allen

Abstract A method for estimating uncertainty in future climate change is discussed in detail and applied to predictions of global mean temperature change. The method uses optimal fingerprinting to make estimates of uncertainty in model simulations of twentieth-century warming. These estimates are then projected forward in time using a linear, compact relationship between twentieth-century warming and twenty-first-century warming. This relationship is established from a large ensemble of energy balance models. By varying the energy balance model parameters an estimate is made of the error associated with using the linear relationship in forecasts of twentieth-century global mean temperature. Including this error has very little impact on the forecasts. There is a 50% chance that the global mean temperature change between 1995 and 2035 will be greater than 1.5 K for the Special Report on Emissions Scenarios (SRES) A1FI scenario. Under SRES B2 the same threshold is not exceeded until 2055. These results should be relatively robust to model developments for a given radiative forcing history.


Sign in / Sign up

Export Citation Format

Share Document