The δ13C of equatorial Atlantic surface waters: Implications for Ice Age pCO2levels

1987 ◽  
Vol 2 (5) ◽  
pp. 489-517 ◽  
Author(s):  
William B. Curry ◽  
Thomas J. Crowley
2021 ◽  
Author(s):  
Jesse R. Farmer ◽  
Daniel M. Sigman ◽  
Julie Granger ◽  
Ona M. Underwood ◽  
François Fripiat ◽  
...  

AbstractSalinity-driven density stratification of the upper Arctic Ocean isolates sea-ice cover and cold, nutrient-poor surface waters from underlying warmer, nutrient-rich waters. Recently, stratification has strengthened in the western Arctic but has weakened in the eastern Arctic; it is unknown if these trends will continue. Here we present foraminifera-bound nitrogen isotopes from Arctic Ocean sediments since 35,000 years ago to reconstruct past changes in nutrient sources and the degree of nutrient consumption in surface waters, the latter reflecting stratification. During the last ice age and early deglaciation, the Arctic was dominated by Atlantic-sourced nitrate and incomplete nitrate consumption, indicating weaker stratification. Starting at 11,000 years ago in the western Arctic, there is a clear isotopic signal of Pacific-sourced nitrate and complete nitrate consumption associated with the flooding of the Bering Strait. These changes reveal that the strong stratification of the western Arctic relies on low-salinity inflow through the Bering Strait. In the central Arctic, nitrate consumption was complete during the early Holocene, then declined after 5,000 years ago as summer insolation decreased. This sequence suggests that precipitation and riverine freshwater fluxes control the stratification of the central Arctic Ocean. Based on these findings, ongoing warming will cause strong stratification to expand into the central Arctic, slowing the nutrient supply to surface waters and thus limiting future phytoplankton productivity.


Science ◽  
2019 ◽  
Vol 363 (6431) ◽  
pp. 1080-1084 ◽  
Author(s):  
Adam P. Hasenfratz ◽  
Samuel L. Jaccard ◽  
Alfredo Martínez-García ◽  
Daniel M. Sigman ◽  
David A. Hodell ◽  
...  

From 1.25 million to 700,000 years ago, the ice age cycle deepened and lengthened from 41,000- to 100,000-year periodicity, a transition that remains unexplained. Using surface- and bottom-dwelling foraminifera from the Antarctic Zone of the Southern Ocean to reconstruct the deep-to-surface supply of water during the ice ages of the past 1.5 million years, we found that a reduction in deep water supply and a concomitant freshening of the surface ocean coincided with the emergence of the high-amplitude 100,000-year glacial cycle. We propose that this slowing of deep-to-surface circulation (i.e., a longer residence time for Antarctic surface waters) prolonged ice ages by allowing the Antarctic halocline to strengthen, which increased the resistance of the Antarctic upper water column to orbitally paced drivers of carbon dioxide release.


2004 ◽  
Vol 31 (23) ◽  
Author(s):  
Peter L. Croot ◽  
Peter Streu ◽  
Ilka Peeken ◽  
Karin Lochte ◽  
Alex R. Baker

2003 ◽  
Vol 7 (2) ◽  
pp. 183-195 ◽  
Author(s):  
W. G. Darling ◽  
A. H. Bath ◽  
J. C. Talbot

Abstract. The utility of stable isotopes as tracers of the water molecule has a long pedigree. The study reported here is part of an attempt to establish a comprehensive isotopic "baseline" for the British Isles as background data for a range of applications. Part 1 of this study (Darling and Talbot, 2003) considered the isotopic composition of rainfall in Britain and Ireland. The present paper is concerned with the composition of surface waters and groundwater. In isotopic terms, surface waters (other than some upland streams) are poorly characterised in the British Isles; their potential variability has yet to be widely used as an aid in hydrological research. In what may be the first study of a major British river, a monthly isotopic record of the upper River Thames during 1998 was obtained. This shows high damping of the isotopic variation compared to that in rainfall over most of the year, though significant fluctuations were seen for the autumn months. Smaller rivers such as the Stour and Darent show a more subdued response to the balance between runoff and baseflow. The relationship between the isotopic composition of rainfall and groundwater is also considered. From a limited database, it appears that whereas Chalk groundwater is a representative mixture of weighted average annual rainfall, for Triassic sandstone groundwater there is a seasonal selection of rainfall biased towards isotopically-depleted winter recharge. This may be primarily the result of physical differences between the infiltration characteristics of rock types, though other factors (vegetation, glacial history) could be involved. In the main, however, groundwaters appear to be representative of bulk rainfall within an error band of 0.5‰ δ18O. Contour maps of the δ18O and δ2H content of recent groundwaters in the British Isles show a fundamental SW-NE depletion effect modified by topography. The range of measured values, while much smaller than those for rainfall, still covers some ‰ for δ18O and 30‰ for δ2H. Over lowland areas the "altitude effect" is of little significance, but in upland areas is consistent with a range of –0.2 to –0.3‰ per 100 m increase in altitude. Groundwaters dating from the late Pleistocene are usually modified in δ18O and δ2H owing to the effects of climate change on the isotopic composition of rainfall and thus of recharge. Contour maps of isotopic variability prior to 10 ka BP, based on the relatively limited information available from the British Isles, allow a first comparison between groundwaters now and at the end of the last Ice Age. The position of the British Isles in the context of the stable isotope systematics of NW Europe is reviewed briefly. Keywords: Stable isotopes, surfacewaters, groundwater, British Isles


Radiocarbon ◽  
1983 ◽  
Vol 25 (2) ◽  
pp. 449-458 ◽  
Author(s):  
Ellen M Druffel

Variability in temperature and 14C levels are recorded in coralline aragonite that grew in the Gulf Stream during the past four centuries. In particular, 18O/16O ratios reflect a decrease of ca 1°C in surface water temperature during the latter part of the Little Ice age. 14C levels also rose in the surface waters of the Gulf Stream and in atmospheric CO2 during the Maunder minimum. These observations indicate that ocean circulation may have been significantly different in the North Atlantic around the beginning of the 18th century.


2015 ◽  
Vol 87 (1) ◽  
pp. 233-237 ◽  
Author(s):  
PEDRO AUGUSTO M.C. MELO ◽  
MAURO DE MELO JÚNIOR ◽  
MOACYR ARAÚJO ◽  
SIGRID NEUMANN-LEITÃO

This communication is the first report of the occurrence of the order Mormonilloida (Mormonilla phasma) in the tropical Southwestern Atlantic Ocean. Female individuals were found in surface waters from the shelf break state of Rio Grande do Norte (Northeastern Brazil) and between depths of 60 and 100 m in the epipelagic layer around the St. Peter and St. Paul Archipelago (equatorial Atlantic). This finding extends the vertical limits for this species.


Sign in / Sign up

Export Citation Format

Share Document