Iron-induced oxidative stress modulates olfactory learning and memory in honeybees.

2008 ◽  
Vol 122 (2) ◽  
pp. 433-447 ◽  
Author(s):  
Tahira Farooqui
2021 ◽  
Vol 11 (2) ◽  
pp. 164
Author(s):  
Jae-Hoon Jeong ◽  
Jung-Hoon Koo ◽  
Jang Soo Yook ◽  
Joon-Yong Cho ◽  
Eun-Bum Kang

Exercise and antioxidants have health benefits that improve cognitive impairment and may act synergistically. In this study, we examined the effects of treadmill exercise (TE) and mitochondria-targeted antioxidant mitoquinone (MitoQ), individually or combined, on learning and memory, mitochondrial dynamics, NADPH oxidase activity, and neuroinflammation and antioxidant activity in the hippocampus of D-galactose-induced aging rats. TE alone and TE combined with MitoQ in aging rats reduced mitochondrial fission factors (Drp1, Fis1) and increased mitochondrial fusion factors (Mfn1, Mfn2, Opa1). These groups also exhibited improved NADPH oxidase activity and antioxidant activity (SOD-2, catalase). TE or MitoQ alone decreased neuroinflammatory response (COX-2, TNF-α), but the suppression was greater with their combination. In addition, aging-increased neuroinflammation in the dentate gyrus was decreased in TE but not MitoQ treatment. Learning and memory tests showed that, contrarily, MitoQ alone demonstrated some similar effects to TE but not a definitive improvement. In conclusion, this study demonstrated that MitoQ exerted some positive effects on aging when used as an isolated treatment, but TE had a more effective role on cognitive impairment, oxidative stress, inflammation, and mitochondria dysfunction. Our findings suggest that the combination of TE and MitoQ exerted no synergistic effects and indicated regular exercise should be the first priority in neuroprotection of age-related cognitive decline.


2010 ◽  
Vol 104 (9) ◽  
pp. 1297-1303 ◽  
Author(s):  
Yan-Hong Huang ◽  
Qing-Hong Zhang

The present study was undertaken to investigate the antioxidant effect of chronic ingestion of genistein (Gen) against neural death in the brain of ovariectomised (Ovx) rats. The rats were randomly divided into five groups, i.e. sham-operated (sham), Ovx-only, Ovx with 17β-oestradiol, Ovx with low (15 mg/kg) and high (30 mg/kg) doses of Gen (Gen-L and Gen-H), and were orally administered daily with drugs or vehicle for 6 weeks. The learning and memory abilities were measured by Morris water maze test. Oxidative damages in the brain were evaluated by the level of superoxide dismutase (SOD), malondialdehyde (MDA) and monoamine oxidase (MAO) activities. Neural apoptosis was shown by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining and caspase-3 activity. In the visual learning and memory test, there were no significant differences among the population means of the five groups. While in the probe trial test, the Gen-L group instead of the Gen-H group exhibited reduced escape latency and increased memory frequency than the Ovx group. Although both doses of Gen could reduce acetylcholinesterase activity, only a low dose of Gen could diminish MDA activity significantly in frontal cortex and enhance SOD content in the hippocampus. In contrast, MAO content was decreased in the cortex by either dose of Gen, while in the hippocampus, only a high dose of Gen appeared to be effective. Interestingly, Gen at both the doses could attenuate the increased number of TUNEL-positive neurons and caspase-3 activity in Ovx rats. These results suggest that Gen confers protection against Ovx-induced neurodegeneration by attenuating oxidative stress, lipid peroxidation and the mitochondria-mediated apoptotic pathway in a region- and dose-dependent manner.


2011 ◽  
Vol 422 ◽  
pp. 470-473
Author(s):  
Gui Shan Liu ◽  
Ze Sheng Zhang ◽  
Bo Yang ◽  
Wei He

Resveratrol (RVT) is a phytoalexin polyphenolic compound found in various plants, including grapes, berries and peanuts. Recently, studies have documented various health benefits of resveratrol including cardiovascular and cancer-chemopreventive properties. The aim of the present study was to demonstrate the effects of resveratrol on the learning and memory impairment. The senescence-accelerated mice (SAM) were introgastric gavage administrated resveratrol (25,100mg/(kg•bw)) for 60 days. The learning and memory behavior was assessed using open-field test while the parameters of oxidative stress assessed were malondialdehyde (MDA) and superoxide dismutases (SOD).The results showed that resveratrol significantly improved the learning and memory ability in open-field test. Further investigation showed that resveratrol restored SOD levels, but decreased MDA level in the mouce brain. These results indicated that the pharmacological action of RVT may offer a novel therapeutic strategy for the treatment of age-related conditions.


Author(s):  
Brian H. Smith ◽  
Ramón Huerta ◽  
Maxim Bazhenov ◽  
Irina Sinakevitch

2019 ◽  
Vol 37 (4) ◽  
pp. 965-976 ◽  
Author(s):  
Zhara Hakimi ◽  
Hossein Salmani ◽  
Narges Marefati ◽  
Zohre Arab ◽  
Zahra Gholamnezhad ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Peng Ren ◽  
Jingwei Chen ◽  
Bingxuan Li ◽  
Mengzhou Zhang ◽  
Bei Yang ◽  
...  

Introduction. Alzheimer’s disease (AD), the most common neurodegenerative disorder, is characterized by the accumulation of amyloid-β (Aβ) peptide and hyperphosphorylated tau protein. Accumulating evidence has revealed that the slow progressive deterioration of AD is associated with oxidative stress and chronic inflammation in the brain. Nuclear factor erythroid 2- (NF-E2-) related factor 2 (Nrf2), which acts through the Nrf2/ARE pathway, is a key regulator of the antioxidant and anti-inflammatory response. Although recent data show a link between Nrf2 and AD-related cognitive decline, the mechanism is still unknown. Thus, we explored how Nrf2 protects brain cells against the oxidative stress and inflammation of AD in a mouse model of AD (APP/PS1 transgenic (AT) mice) with genetic removal of Nrf2. Methods. The spatial learning and memory abilities of 12-month-old transgenic mice were evaluated using a Morris water maze test. Hippocampal levels of Nrf2, Aβ, and p-tauS404 and of astrocytes and microglia were determined by immunostaining. Inflammatory cytokines were determined by ELISA and quantitative real-time polymerase chain reaction (qRT-PCR). Oxidative stress was measured by 8-hydroxydeoxyguanosine immunohistochemistry, and the antioxidant response was determined by qRT-PCR. Results. The spatial learning and memory abilities of AT mice were impaired after Nrf2 deletion. Aβ and p-tauS404 accumulation was increased in the hippocampus of AT/Nrf2-KO mice. Astroglial and microglial activation was exacerbated, followed by upregulation of the proinflammatory cytokines IL-1β, IL-6, and TNF-α. Conclusion. Our present results show that Nrf2 deficiency aggravates AD-like pathology in AT mice. This phenotype was associated with increased levels of oxidative and proinflammatory markers, which suggests that the Nrf2 pathway may be a promising therapeutic target for AD.


2001 ◽  
Vol 21 (21) ◽  
pp. 8417-8425 ◽  
Author(s):  
Nisha Philip ◽  
Summer F. Acevedo ◽  
Efthimios M. C. Skoulakis

Sign in / Sign up

Export Citation Format

Share Document