Psychological assessment in clinical settings in Lithuania: Post soviet heritage and future perspectives

2011 ◽  
Author(s):  
Neringa Grigutyte ◽  
Vaida Kalpokiene
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 821
Author(s):  
Iyyakkannu Sivanesan ◽  
Manikandan Muthu ◽  
Judy Gopal ◽  
Nazim Hasan ◽  
Syed Kashif Ali ◽  
...  

Chitin (poly-N-acetyl-D-glucosamine) is the second (after cellulose) most abundant organic polymer. In its deacetylated form—chitosan—becomes a very interesting material for medical use. The chitosan nano-structures whose preparation is described in this article shows unique biomedical value. The preparation of nanochitosan, as well as the most vital biomedical applications (antitumor, drug delivery and other medical uses), have been discussed in this review. The challenges confronting the progress of nanochitosan from benchtop to bedside clinical settings have been evaluated. The need for inclusion of nano aspects into chitosan research, with improvisation from nanotechnological inputs has been prescribed for breaking down the limitations. Future perspectives of nanochitosan and the challenges facing nanochitosan applications and the areas needing research focus have been highlighted.


Author(s):  
Huafeng Lin ◽  
Gang Li ◽  
Xiangwen Peng ◽  
Aimin Deng ◽  
Lei Ye ◽  
...  

Clustered regularly interspaced short palindromic repeats (CRISPR) systems are a set of versatile gene-editing toolkit that perform diverse revolutionary functions in various fields of application such as agricultural practices, food industry, biotechnology, biomedicine, and clinical research. Specially, as a novel antiviral method of choice, CRISPR/Cas9 system has been extensively and effectively exploited to fight against human infectious viruses. Infectious diseases including human immunodeficiency virus (HIV), hepatitis B virus (HBV), human papillomavirus (HPV), and other viruses are still global threats with persistent potential to probably cause pandemics. To facilitate virus removals, the CRISPR/Cas9 system has already been customized to confer new antiviral capabilities into host animals either by modifying host genome or by directly targeting viral inherent factors in the form of DNA. Although several limitations and difficulties still need to be conquered, this technology holds great promises in the treatment of human viral infectious diseases. In this review, we will first present a brief biological feature of CRISPR/Cas9 systems, which includes a description of CRISPR/Cas9 structure and composition; thereafter, we will focus on the investigations and applications that employ CRISPR/Cas9 system to combat several human infectious viruses and discuss challenges and future perspectives of using this new platform in the preclinical and clinical settings as an antiviral strategy.


2020 ◽  
Vol 93 (1112) ◽  
pp. 20200116
Author(s):  
Hiroshi Juri ◽  
Yoshifumi Narumi ◽  
Valeria. Panebianco ◽  
Keigo Osuga

The distinction of non-muscle-invasive bladder cancer and muscle-invasive bladder cancer is important for the selection of the optimal treatment. Multiparametric MRI (mp-MRI) has been an useful modality for the T staging of bladder cancer, and a systematic evaluation of mp-MRI is needed. The Vesical Imaging Reporting and Data System was designed to standardize the scanning and reporting criteria based on mp-MRI for clinical and research applications. This review briefly describes the method, interpretation, and timing of mp-MRI examinations in the clinical settings. Validation studies of Vesical Imaging Reporting and Data System and future perspectives are also considered.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Paraskevi Pavlakou ◽  
Vassilios Liakopoulos ◽  
Theodoros Eleftheriadis ◽  
Michael Mitsis ◽  
Evangelia Dounousi

Acute kidney injury (AKI) is a multifactorial entity that occurs in a variety of clinical settings. Although AKI is not a usual reason for intensive care unit (ICU) admission, it often complicates critically ill patients’ clinical course requiring renal replacement therapy progressing sometimes to end-stage renal disease and increasing mortality. The causes of AKI in the group of ICU patients are further complicated from damaged metabolic state, systemic inflammation, sepsis, and hemodynamic dysregulations, leading to an imbalance that generates oxidative stress response. Abundant experimental and to a less extent clinical data support the important role of oxidative stress-related mechanisms in the injury phase of AKI. The purpose of this article is to present the main pathophysiologic mechanisms of AKI in ICU patients focusing on the different aspects of oxidative stress generation, the available evidence of interventional measures for AKI prevention, biomarkers used in a clinical setting, and future perspectives in oxidative stress regulation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1901
Author(s):  
Fernanda C. Moraes ◽  
Chantal Pichon ◽  
Didier Letourneur ◽  
Frédéric Chaubet

MicroRNAs (miRNAs) are short (~21–23 nucleotides), non-coding endogenous RNA molecules that modulate gene expression at the post-transcriptional level via the endogenous RNA interference machinery of the cell. They have emerged as potential biopharmaceuticals candidates for the treatment of various diseases, including cancer, cardiovascular and metabolic diseases. However, in order to advance miRNAs therapeutics into clinical settings, their delivery remains a major challenge. Different types of vectors have been investigated to allow the delivery of miRNA in the diseased tissue. In particular, non-viral delivery systems have shown important advantages such as versatility, low cost, easy fabrication and low immunogenicity. Here, we present a general overview of the main types of non-viral vectors developed for miRNA delivery, with their advantages, limitations and future perspectives.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Fumiharu Ohka ◽  
Atsushi Natsume ◽  
Toshihiko Wakabayashi

Glioblastoma multiforme (GBM) is one of the most frequently occurring tumors in the central nervous system and the most malignant tumor among gliomas. Despite aggressive treatment including surgery, adjuvant TMZ-based chemotherapy, and radiotherapy, GBM still has a dismal prognosis: the median survival is 14.6 months from diagnosis. To date, many studies report several determinants of resistance to this aggressive therapy: (1)O6-methylguanine-DNA methyltransferase (MGMT), (2) the complexity of several altered signaling pathways in GBM, (3) the existence of glioma stem-like cells (GSCs), and (4) the blood-brain barrier. Many studies aim to overcome these determinants of resistance to conventional therapy by using various approaches to improve the dismal prognosis of GBM such as modifying TMZ administration and combining TMZ with other agents, developing novel molecular-targeting agents, and novel strategies targeting GSCs. In this paper, we review up-to-date clinical trials of GBM treatments in order to overcome these 4 hurdles and to aim at more therapeutical effect than conventional therapies that are ongoing or are about to launch in clinical settings and discuss future perspectives.


Sign in / Sign up

Export Citation Format

Share Document