Behavioral safety: Meeting the challenge of making a large-scale difference.

2001 ◽  
Vol 2 (2) ◽  
pp. 64-77 ◽  
Author(s):  
E. Scott Geller
2012 ◽  
Vol 13 (6) ◽  
pp. 1925-1938 ◽  
Author(s):  
Rogier van der Velde ◽  
Mhd. Suhyb Salama ◽  
Marcel D. van Helvoirt ◽  
Zhongbo Su ◽  
Yaoming Ma

Abstract Understanding the sources of uncertainty that cause deviations between simulated and satellite-observed states can facilitate optimal usage of these products via data assimilation or calibration techniques. A method is presented for separating uncertainties following from (i) scale differences between model grid and satellite footprint, (ii) residuals inherent to imperfect model and retrieval applications, and (iii) biases in the climatologies of simulations and retrievals. The method is applied to coarse (10 km) soil moisture simulations by the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5)–Noah regional climate model and 2.5 years of high-resolution (100 m) retrievals from the Advanced Synthetic Aperture Radar (ASAR) data collected over central Tibet. Suppression of the bias is performed via cumulative distribution function (CDF) matching. The other deviations are separated by taking the variance of the ASAR soil moisture at the coarse MM5 model grid as measure for the deviations caused by scale differences. Via decomposition of the uncertainty sources it is shown that the bias and the spatial-scale difference explain the majority (>70%) of the deviations between the two products, whereas the contribution of model–observation residuals is less than 30% on a monthly basis. Consequently, this study demonstrates that accounting for uncertainties caused by bias as well as spatial-scale difference is imperative for meaningful assimilation of high-resolution soil moisture products. On the other hand, the large uncertainties following from spatial-scale differences suggests that high-resolution soil moisture products have a potential of providing observation-based input for the subgrid spatial variability parameterizations within large-scale models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wray Gabel ◽  
Peter Frederick ◽  
Jabi Zabala

AbstractPositive ecological relationships, such as facilitation, are an important force in community organization. The effects of facilitative relationships can be strong enough to cause changes in the distributions of species and in many cases have evolved as a response to predation pressure, however, very little is known about this potential trend in vertebrate facilitative relationships. Predation is an important selective pressure that may strongly influence breeding site selection by nesting birds. The American Alligator (Alligator mississippiensis) facilitates a safer nesting location for wading birds (Ciconiiformes and Pelecaniformes) by deterring mammalian nest predators from breeding sites. However, alligators do not occur throughout the breeding range of most wading birds, and it is unclear whether alligator presence affects colony site selection. We predicted that nesting wading birds change colony site preferences when alligators are not present to serve as nest protectors. Within the northern fringe of alligator distribution we compared colony characteristics in locations where alligator presence was either likely or unlikely while controlling for availability of habitat. Wading birds preferred islands that were farther from the mainland and farther from landmasses > 5 ha when alligator presence was unlikely compared to when alligators were likely. These findings indicate that wading birds are seeking nesting locations that are less accessible to mammalian predators when alligators are not present, and that this requirement is relaxed when alligators are present. This study illustrates how a landscape-scale difference between realized and fundamental niche can result from a facilitative relationship in vertebrates.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
J. Liu ◽  
N. D. Theodore ◽  
D. Adams ◽  
S. Russell ◽  
T. L. Alford ◽  
...  

Copper-based metallization has recently attracted extensive research because of its potential application in ultra-large-scale integration (ULSI) of semiconductor devices. The feasibility of copper metallization is, however, limited due to its thermal stability issues. In order to utilize copper in metallization systems diffusion barriers such as titanium nitride and other refractory materials, have been employed to enhance the thermal stability of copper. Titanium nitride layers can be formed by annealing Cu(Ti) alloy film evaporated on thermally grown SiO2 substrates in an ammonia ambient. We report here the microstructural evolution of Cu(Ti)/SiO2 layers during annealing in NH3 flowing ambient.The Cu(Ti) films used in this experiment were prepared by electron beam evaporation onto thermally grown SiO2 substrates. The nominal composition of the Cu(Ti) alloy was Cu73Ti27. Thermal treatments were conducted in NH3 flowing ambient for 30 minutes at temperatures ranging from 450°C to 650°C. Cross-section TEM specimens were prepared by the standard procedure.


Author(s):  
F. A. Durum ◽  
R. G. Goldman ◽  
T. J. Bolling ◽  
M. F. Miller

CMP-KDO synthetase (CKS) is an enzyme which plays a key role in the synthesis of LPS, an outer membrane component unique to gram negative bacteria. CKS activates KDO to CMP-KDO for incorporation into LPS. The enzyme is normally present in low concentrations (0.02% of total cell protein) which makes it difficult to perform large scale isolation and purification. Recently, the gene for CKS from E. coli was cloned and various recombinant DNA constructs overproducing CKS several thousandfold (unpublished data) were derived. Interestingly, no cytoplasmic inclusions of overproduced CKS were observed by EM (Fig. 1) which is in contrast to other reports of large proteinaceous inclusion bodies in various overproducing recombinant strains. The present immunocytochemical study was undertaken to localize CKS in these cells.Immune labeling conditions were first optimized using a previously described cell-free test system. Briefly, this involves soaking small blocks of polymerized bovine serum albumin in purified CKS antigen and subjecting them to various fixation, embedding and immunochemical conditions.


Sign in / Sign up

Export Citation Format

Share Document