Cue interaction between buildings and street configurations during reorientation in familiar and unfamiliar outdoor environments.

2018 ◽  
Vol 44 (4) ◽  
pp. 631-644 ◽  
Author(s):  
Lin Wang ◽  
Weimin Mou ◽  
Peter Dixon
2019 ◽  
Vol E102.B (8) ◽  
pp. 1676-1688 ◽  
Author(s):  
Mitsuki NAKAMURA ◽  
Motoharu SASAKI ◽  
Wataru YAMADA ◽  
Naoki KITA ◽  
Takeshi ONIZAWA ◽  
...  

ROBOT ◽  
2011 ◽  
Vol 33 (3) ◽  
pp. 265-272 ◽  
Author(s):  
Bo ZHOU ◽  
Xianzhong DAI ◽  
Jianda HAN

2020 ◽  
Vol 12 (4) ◽  
pp. 1360 ◽  
Author(s):  
Robert D. Brown ◽  
Robert C. Corry

More than 80% of the people in the USA and Canada live in cities. Urban development replaces natural environments with built environments resulting in limited access to outdoor environments which are critical to human health and well-being. In addition, many urban open spaces are unused because of poor design. This paper describes case studies where traditional landscape architectural design approaches would have compromised design success, while evidence-based landscape architecture (EBLA) resulted in a successful product. Examples range from school-yard design that provides safe levels of solar radiation for children, to neighborhood parks and sidewalks that encourage people to walk and enjoy nearby nature. Common characteristics for integrating EBLA into private, public, and academic landscape architecture practice are outlined along with a discussion of some of the opportunities and barriers to implementation.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 254
Author(s):  
Constance Woodman ◽  
Chris Biro ◽  
Donald J. Brightsmith

The release of captive-raised parrots to create or supplement wild populations has been critiqued due to variable survival rates and unreliable flocking behavior. Private bird owners free-fly their parrots in outdoor environments and utilize techniques that could address the needs of conservation breed and release projects. We present methods and results of a free-flight training technique used for 3 parrot flocks: A large-bodied (8 macaws of 3 species and 2 hybrids), small-bodied (25 individuals of 4 species), and a Sun Parakeet flock (4 individuals of 1 species). Obtained as chicks, the birds were hand-reared in an enriched environment. As juveniles, the birds were systematically exposed to increasingly complex wildland environments, mirroring the learning process of wild birds developing skills. The criteria we evaluated for each flock were predation rates, antipredator behavior, landscape navigation, and foraging. No parrots were lost to predation or disorientation during over 500 months of free-flight time, and all birds demonstrated effective flocking, desirable landscape navigation, and wild food usage. The authors conclude that this free-flight method may be directly applicable for conservation releases, similar to the use of falconry methods for raptor conservation.


Author(s):  
Brandon K Hopkins ◽  
Priyadarshini Chakrabarti ◽  
Hannah M Lucas ◽  
Ramesh R Sagili ◽  
Walter S Sheppard

Abstract Global decline in insect pollinators, especially bees, have resulted in extensive research into understanding the various causative factors and formulating mitigative strategies. For commercial beekeepers in the United States, overwintering honey bee colony losses are significant, requiring tactics to overwinter bees in conditions designed to minimize such losses. This is especially important as overwintered honey bees are responsible for colony expansion each spring, and overwintered bees must survive in sufficient numbers to nurse the spring brood and forage until the new ‘replacement’ workers become fully functional. In this study, we examined the physiology of overwintered (diutinus) bees following various overwintering storage conditions. Important physiological markers, i.e., head proteins and abdominal lipid contents were higher in honey bees that overwintered in controlled indoor storage facilities, compared with bees held outdoors through the winter months. Our findings provide new insights into the physiology of honey bees overwintered in indoor and outdoor environments and have implications for improved beekeeping management.


2021 ◽  
Vol 11 (4) ◽  
pp. 1902
Author(s):  
Liqiang Zhang ◽  
Yu Liu ◽  
Jinglin Sun

Pedestrian navigation systems could serve as a good supplement for other navigation methods or for extending navigation into areas where other navigation systems are invalid. Due to the accumulation of inertial sensing errors, foot-mounted inertial-sensor-based pedestrian navigation systems (PNSs) suffer from drift, especially heading drift. To mitigate heading drift, considering the complexity of human motion and the environment, we introduce a novel hybrid framework that integrates a foot-state classifier that triggers the zero-velocity update (ZUPT) algorithm, zero-angular-rate update (ZARU) algorithm, and a state lock, a magnetic disturbance detector, a human-motion-classifier-aided adaptive fusion module (AFM) that outputs an adaptive heading error measurement by fusing heuristic and magnetic algorithms rather than simply switching them, and an error-state Kalman filter (ESKF) that estimates the optimal systematic error. The validation datasets include a Vicon loop dataset that spans 324.3 m in a single room for approximately 300 s and challenging walking datasets that cover large indoor and outdoor environments with a total distance of 12.98 km. A total of five different frameworks with different heading drift correction methods, including the proposed framework, were validated on these datasets, which demonstrated that our proposed ZUPT–ZARU–AFM–ESKF-aided PNS outperforms other frameworks and clearly mitigates heading drift.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Munkhjargal Gochoo ◽  
Sheikh Badar Ud Din Tahir ◽  
Ahmad Jalal ◽  
Kibum Kim

Sign in / Sign up

Export Citation Format

Share Document