In vitro simulation of senescence-related membrane damage by ozone-induced lipid peroxidation

Nature ◽  
1980 ◽  
Vol 283 (5746) ◽  
pp. 504-506 ◽  
Author(s):  
K. P. Pauls ◽  
J. E. Thompson
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Ignacio Jofré ◽  
Magdalena Cuevas ◽  
Leticia Signori de Castro ◽  
João Diego de Agostini Losano ◽  
Mariana Andrade Torres ◽  
...  

The production of reactive oxygen species (ROS) in boar spermatozoa increases in refrigeration; this can have an impact on sperm quality and fertilization capacity. We evaluated the effect of polyphenol-rich aqueous extract of murtilla (Ugni molinae Turcz) on boar sperm stored at 17°C in order to reduce oxidative stress and improve sperm quality in the long term. Five experiments were performed: first, characterization of the polyphenol content from five genotypes of murtilla; second, determination of the genotype with the best antioxidant effect (MT-Ex); third, the antioxidant capacity on O2- and lipid peroxidation; fourth, the influence of MT-Ex on motility, calcium movement, cAMP, and metabolic parameters; and fifth, analysis of long-term refrigeration. The average phenolic content was 344 ppm; gallic acid, catechin, quercetin, myricetin, and kaempferol were detected. All extracts evaluated presented a concentration-dependent antioxidant effect. MT-Ex reduces intracellular O2-/peroxides but low lipid peroxidation. MT-Ex in nonstimulated ROS conditions reduces sperm motility, mitochondrial membrane potential, cAMP, and ATP, but the succinate dehydrogenase activity remained normal; also, we observed a reduction in calcium movement in in vitro sperm capacitation. The long-term analyses showed that MT-Ex improved sperm motility decay and reduced membrane damage and ROS at 168 h. Based on this study, we propose MT-Ex as a supplement in semen extenders.


2020 ◽  
Vol 51 (4) ◽  
pp. 1038-1047
Author(s):  
Mawia & et al.

This study had as principal objective identification of osmotic-tolerant potato genotypes by using "in vitro" tissue culture and sorbitol as a stimulating agent, to induce water stress, which was added to the  culture nutritive medium in different concentration (0,50, 110, 220, 330 and 440 mM).  The starting point was represented by plantlets culture collection, belonging to eleven potato genotypes: Barcelona, Nectar, Alison, Jelly, Malice, Nazca, Toronto, Farida, Fabulla, Colomba and Spunta. Plantlets were multiplied between two internodes to obtain microcuttings (in sterile condition), which were inoculated on medium. Sorbitol-induced osmotic stress caused a significant reduction in the ascorbic acid, while the concentration of proline, H2O2 and solutes leakage increased compared with the control. Increased the proline content prevented lipid peroxidation, which played a pivotal role in the maintenance of membrane integrity under osmotic stress conditions. The extent of the cytoplasmic membrane damage depends on osmotic stress severity and the genotypic variation in the maintenance of membranes stability was highly associated with the ability of producing more amounts of osmoprotectants (proline) and the non-enzymic antioxidant ascorbic acid in response to osmotic stress level. The results showed that the genotypes Jelly, Nectar, Allison, Toronto, and Colomba are classified as highly osmotic stress tolerant genotypes, while the genotypes Nazca and Farida are classified as osmotic stress susceptible ones.


2018 ◽  
Vol 18 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Denis V. Mishchenko ◽  
Margarita E. Neganova ◽  
Elena N. Klimanova ◽  
Tatyana E. Sashenkova ◽  
Sergey G. Klochkov ◽  
...  

Background: Anti-tumor effect of hydroxamic acid derivatives is largely connected with its properties as efficient inhibitors of histone deacetylases, and other metalloenzymes involved in carcinogenesis. Objective: The work was aimed to (i) determine the anti-tumor and chemosensitizing activity of the novel racemic spirocyclic hydroxamic acids using experimental drug sensitive leukemia P388 of mice, and (ii) determine the structure-activity relationships as metal chelating and HDAC inhibitory agents. Method: Outbreed male rat of 200-220 g weights were used in biochemical experiments. In vivo experiments were performed using the BDF1 hybrid male mice of 22-24 g weight. Lipid peroxidation, Fe (II) -chelating activity, HDAC fluorescent activity, anti-tumor and anti-metastatic activity, acute toxicity techniques were used in this study. Results: Chemosensitizing properties of water soluble cyclic hydroxamic acids (CHA) are evaluated using in vitro activities and in vivo methods and found significant results. These compounds possess iron (II) chelating properties, and slightly inhibit lipid peroxidation. CHA prepared from triacetonamine (1a-e) are more effective Fe (II) ions cheaters, as compared to CHA prepared from 1- methylpiperidone (2a-e). The histone deacetylase (HDAC) inhibitory activity, lipophilicity and acute toxicity were influenced by the length amino acids (size) (Glycine < Alanine < Valine < Leucine < Phenylalanine). All compounds bearing spiro-N-methylpiperidine ring (2a-e) are non-toxic up to 1250 mg/kg dose, while compounds bearing spiro-tetramethylpiperidine ring (1a-e) exhibit moderate toxicity which increases with increasing lipophility, but not excite at 400 mg/kg. Conclusion: It was shown that the use of combination of non-toxic doses of cisplatin (cPt) or cyclophosphamide with CHA in most cases result in the appearance of a considerable anti-tumor effect of cytostatics. The highest chemosensitizing activity with respect to leukemia Р388 is demonstrated by the CHA derivatives of Valine 1c or 2c.


Author(s):  
Hassan Ahmadvand ◽  
Majid Tavafi ◽  
Ali Khosrowbeygi ◽  
Gholamreza Shahsavari ◽  
Maryam Hormozi ◽  
...  

Author(s):  
Olubukola H. Oyeniran ◽  
Adedayo O. Ademiluyi ◽  
Ganiyu Oboh

AbstractObjectivesRauvolfia vomitoria is a medicinal plant used traditionally in Africa in the management of several human diseases including psychosis. However, there is inadequate scientific information on the potency of the phenolic constituents of R. vomitoria leaf in the management of neurodegeneration. Therefore, this study characterized the phenolic constituents and investigated the effects of aqueous and methanolic extracts of R. vomitoria leaf on free radicals, Fe2+-induced lipid peroxidation, and critical enzymes linked to neurodegeneration in rat’s brain in vitro.MethodsThe polyphenols were evaluated by characterizing phenolic constituents using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The antioxidant properties were assessed through the extracts ability to reduce Fe3+ to Fe2+; inhibit ABTS, DPPH, and OH radicals and Fe2+-induced lipid peroxidation. The effects of the extracts on AChE and MAO were also evaluated.ResultsThe phenolic characterization of R. vomitoria leaf revealed that there were more flavonoids present. Both aqueous and methanolic extracts of R. vomitoria leaf had inhibitory effects with the methanolic extract having higher significant (p≤0.05) free radicals scavenging ability coupled with inhibition of monoamine oxidases. However, there was no significant (p≤0.05) difference obtained in the inhibition of lipid peroxidation and cholinesterases.ConclusionThis study suggests that the rich phenolic constituents of R. vomitoria leaf might contribute to the observed antioxidative and neuroprotective effects. The methanolic extract was more potent than the aqueous extract; therefore, extraction of R. vomitoria leaf with methanol could offer better health-promoting effects in neurodegenerative condition.


Zygote ◽  
2021 ◽  
pp. 1-5
Author(s):  
H. Debbarh ◽  
N. Louanjli ◽  
S. Aboulmaouahib ◽  
M. Jamil ◽  
L. Ahbbas ◽  
...  

Summary Maternal age is a significant factor influencing in vitro fertilization (IVF) outcomes. Oxidative stress (OS) is one of the major causes of age-related cellular and molecular damage. The purpose of this work was to investigate the correlation between maternal age with intrafollicular antioxidants and OS markers in follicular fluid (FF), and also to determine the OS status in patients of advanced age. This study was a prospective study including 201 women undergoing IVF whose age was between 24 and 45 years old. FF samples were obtained from mature follicles at the time of oocyte retrieval. After treatment of FF, lipid peroxidation levels (MDA) and enzyme activities such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione (GSH) level were evaluated using spectrophotometry. The results indicated that the age cutoff point for increasing the MDA level was fixed at 37 years, allowing the study to be differentiated into two age groups. Group I included patients whose age was less than 37 years, and group II included patients whose age was greater than or equal 37 years. Statistical analysis revealed that MDA and GSH levels and GR activity were significantly higher in group II compared with group I. The SOD and CAT activities were significantly less in group II compared with group I. We concluded that from 37 years old a reproductive ageing was accompanied by a change in the antioxidant pattern in FF that impaired reactive oxygen species scavenging efficiency.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 365 ◽  
Author(s):  
Audrey Swiader ◽  
Caroline Camaré ◽  
Paul Guerby ◽  
Robert Salvayre ◽  
Anne Negre-Salvayre

Solar ultraviolet A (UV-A) radiation promotes a huge variety of damages on connective tissues and dermal fibroblasts, including cellular senescence, a major contributor of skin photoaging. The mechanisms of skin photoaging evoked by UV-A partly involve the generation of reactive oxygen species and lipid peroxidation. We previously reported that 4-hydroxynonenal (HNE), a lipid peroxidation-derived aldehyde, forms adducts on elastin in the skins of UV-A irradiated hairless mice, possibly contributing to actinic elastosis. In the present study, we investigated whether and how HNE promotes fibroblast senescence in skin photoaging. Dermal fibroblasts of skins from UV-A-exposed hairless mice exhibited an increased number of γH2AX foci characteristic of cell senescence, together with an accumulation of HNE adducts partly colocalizing with the cytoskeletal protein vimentin. Murine fibroblasts exposed to UV-A radiation (two cycles of 15 J/cm2), or HNE (30 µM, 4 h), exhibited senescence patterns characterized by an increased γH2AX foci expression, an accumulation of acetylated proteins, and a decreased expression of the sirtuin SIRT1. HNE adducts were detected on vimentin in cultured fibroblasts irradiated by UV-A or incubated with HNE. The HNE scavenger carnosine prevented both vimentin modification and fibroblast senescence evoked by HNE in vitro and in the skins of UV-A-exposed mice. Altogether, these data emphasize the role of HNE and lipid peroxidation-derived aldehydes in fibroblast senescence, and confirm the protective effect of carnosine in skin photoaging.


Sign in / Sign up

Export Citation Format

Share Document