Interactions of the LIM-domain-binding factor Ldbl with LIM homeodomain proteins

Nature ◽  
1996 ◽  
Vol 384 (6606) ◽  
pp. 270-272 ◽  
Author(s):  
Alan D. Agulnick ◽  
Masanori Taira ◽  
Joseph J. Breen ◽  
Tomohiro Tanaka ◽  
Igor B. Dawid ◽  
...  
Development ◽  
2002 ◽  
Vol 129 (21) ◽  
pp. 4879-4889
Author(s):  
Hsiao-Huei Chen ◽  
Joseph W. Yip ◽  
Alexandre F. R. Stewart ◽  
Eric Frank

In the stretch-reflex system, proprioceptive sensory neurons make selective synaptic connections with different subsets of motoneurons, according to the peripheral muscles they supply. To examine the molecular mechanisms that may influence the selection of these synaptic targets, we constructed single-cell cDNA libraries from sensory neurons that innervate antagonist muscles. Differential screening of these libraries identified a transcription regulatory co-factor of the LIM homeodomain proteins, the LIM domain only 4 protein Lmo4, expressed in most adductor but few sartorius sensory neurons. Differential patterns of Lmo4 expression were also seen in sensory neurons supplying three other muscles. A subset of motoneurons also expresses Lmo4 but the pattern of expression is not specific for motor pools. Differential expression of Lmo4 occurs early, as neurons develop their characteristic LIM homeodomain protein expression patterns. Moreover, ablation of limb buds does not block Lmo4 expression, suggesting that an intrinsic program controls the early differential expression of Lmo4. LIM homeodomain proteins are known to regulate several aspects of sensory and motor neuronal development. Our results suggest that Lmo4 may participate in this differentiation by regulating the transcriptional activity of LIM homeodomain proteins.


2011 ◽  
Vol 286 (50) ◽  
pp. 42971-42980 ◽  
Author(s):  
Morgan S. Gadd ◽  
Mugdha Bhati ◽  
Cy M. Jeffries ◽  
David B. Langley ◽  
Jill Trewhella ◽  
...  

Development ◽  
2009 ◽  
Vol 137 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Jean-Yves Roignant ◽  
Kevin Legent ◽  
Florence Janody ◽  
Jessica E. Treisman

1997 ◽  
Vol 17 (10) ◽  
pp. 5688-5698 ◽  
Author(s):  
L W Jurata ◽  
G N Gill

LIM homeodomain and LIM-only (LMO) transcription factors contain two tandemly arranged Zn2+-binding LIM domains capable of mediating protein-protein interactions. These factors have restricted patterns of expression, are found in invertebrates as well as vertebrates, and are required for cell type specification in a variety of developing tissues. A recently identified, widely expressed protein, NLI, binds with high affinity to the LIM domains of LIM homeodomain and LMO proteins in vitro and in vivo. In this study, a 38-amino-acid fragment of NLI was found to be sufficient for the association of NLI with nuclear LIM domains. In addition, NLI was shown to form high affinity homodimers through the amino-terminal 200 amino acids, but dimerization of NLI was not required for association with the LIM homeodomain protein Lmxl. Chemical cross-linking analysis revealed higher-order complexes containing multiple NLI molecules bound to Lmx1, indicating that dimerization of NLI does not interfere with LIM domain interactions. Additionally, NLI formed complexes with Lmx1 on the rat insulin I promoter and inhibited the LIM domain-dependent synergistic transcriptional activation by Lmx1 and the basic helix-loop-helix protein E47 from the rat insulin I minienhancer. These studies indicate that NLI contains at least two functionally independent domains and may serve as a negative regulator of synergistic transcriptional responses which require direct interaction via LIM domains. Thus, NLI may regulate the transcriptional activity of LIM homeodomain proteins by determining specific partner interactions.


2013 ◽  
Vol 27 (1) ◽  
pp. 74-91 ◽  
Author(s):  
Anne-Laure Schang ◽  
Anne Granger ◽  
Bruno Quérat ◽  
Christian Bleux ◽  
Joëlle Cohen-Tannoudji ◽  
...  

GATA2 transcription factor and LIM homeodomain proteins Islet1 (ISL1) and LIM homeobox 3 (LHX3) are suspected to be involved in gonadotrope cell fate and maintenance. The GnRH receptor gene (Gnrhr), crucial for gonadotrope function, is expressed in the pituitary gland from embryonic day 13.5 onward, well before LH and FSH β-subunits. This expression pattern together with the presence of WGATAR and TAAT motifs in Gnrhr promoter sequences suggests the involvement of early transcription factors in promoter activation. In this study, using a well-characterized transgenic mouse model, GATA2 was found colocalized with Gnrhr promoter activity in the pituitary. Transient transfection of Gnrhr promoter luciferase fusion constructs together with either GATA2 expression vectors or small interfering RNA in gonadotrope cell lines indicated that GATA2, which typically acts as a trans-activator, unexpectedly repressed Gnrhr promoter activity. Using DNA chromatography affinity and EMSA, we demonstrated that GATA2 operates via a response element containing a peculiar palindromic GATA motif that overlaps a critical TAAT motif involved in LHX3/ISL1 trans-activation. Indeed, despite the inhibitory action of GATA2, this element displayed a clear-cut enhancer activity in gonadotrope cells. Chromatin immunoprecipitation assays indicated that GATA2, LHX3, and ISL1 interact with a Gnrhr promoter fragment encompassing this element. The trans-repressive action of GATA2 on Gnrhr promoter activity is likely balanced or even hindered by trans-activating effects of LIM homeodomain proteins via this novel bifunctional LIM/GATA response element. Such a hierarchical interplay may contribute to finely adjust Gnrhr gene expression in gonadotrope cell lineage during pituitary development as well as in the adult animal.


Neuron ◽  
2004 ◽  
Vol 41 (3) ◽  
pp. 337-350 ◽  
Author(s):  
Joshua P Thaler ◽  
Sonya J Koo ◽  
Artur Kania ◽  
Karen Lettieri ◽  
Shane Andrews ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document