scholarly journals Over-expression of Gadd45a enhances radiotherapy efficacy in human Tca8113 cell line

2011 ◽  
Vol 32 (2) ◽  
pp. 253-258 ◽  
Author(s):  
Xiao-ying Zhang ◽  
Xun Qu ◽  
Cheng-qin Wang ◽  
Cheng-jun Zhou ◽  
Gui-xiang Liu ◽  
...  
1997 ◽  
Vol 110 (5) ◽  
pp. 653-661 ◽  
Author(s):  
I.J. Furlong ◽  
R. Ascaso ◽  
A. Lopez Rivas ◽  
M.K. Collins

ICE-like protease activation and DNA fragmentation are preceded by a decrease in intracellular pH (pHi) during apoptosis in the IL-3 dependent cell line BAF3. Acidification occurs after 7 hours in cells deprived of IL-3 and after 4 hours when cells are treated with etoposide, close to the time of detection of ICE-like protease activity. Increasing extracellular pH reduces ICE-like protease activation and DNA fragmentation. Bcl-2 over-expression both delays acidification and inhibits ICE-like protease activation. Generation of a rapid intracellular pH decrease, using the ionophore nigericin, induces ICE-like protease activation and apoptosis. ZVAD, a cell permeable inhibitor of ICE-like proteases, does not affect acidification but inhibits apoptosis induced by IL-3 removal or nigericin treatment. These data suggest that intracellular acidification triggers apoptosis by directly or indirectly activating ICE-like proteases.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Lisa Walker ◽  
Karen Dockstader ◽  
Dobromir Slavov ◽  
Carmen Sucharov

2020 ◽  
Vol 48 (11) ◽  
pp. 5849-5858 ◽  
Author(s):  
Amos A Schaffer ◽  
Eli Kopel ◽  
Ayal Hendel ◽  
Ernesto Picardi ◽  
Erez Y Levanon ◽  
...  

Abstract Adenosine-to-inosine (A-to-I) RNA editing is a common post transcriptional modification. It has a critical role in protecting against false activation of innate immunity by endogenous double stranded RNAs and has been associated with various regulatory processes and diseases such as autoimmune and cardiovascular diseases as well as cancer. In addition, the endogenous A-to-I editing machinery has been recently harnessed for RNA engineering. The study of RNA editing in humans relies heavily on the usage of cell lines as an important and commonly-used research tool. In particular, manipulations of the editing enzymes and their targets are often developed using cell line platforms. However, RNA editing in cell lines behaves very differently than in normal and diseased tissues, and most cell lines exhibit low editing levels, requiring over-expression of the enzymes. Here, we explore the A-to-I RNA editing landscape across over 1000 human cell lines types and show that for almost every editing target of interest a suitable cell line that mimics normal tissue condition may be found. We provide CLAIRE, a searchable catalogue of RNA editing levels across cell lines available at http://srv00.recas.ba.infn.it/atlas/claire.html, to facilitate rational choice of appropriate cell lines for future work on A-to-I RNA editing.


DNA Repair ◽  
2010 ◽  
Vol 9 (11) ◽  
pp. 1170-1175 ◽  
Author(s):  
Wooi Loon Ng ◽  
Dan Yan ◽  
Xiangming Zhang ◽  
Yin-Yuan Mo ◽  
Ya Wang

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1549-1549
Author(s):  
Jorge P. Pinto ◽  
Pedro Ramos ◽  
Sergio de Almeida ◽  
Susana Oliveira ◽  
Laura Breda ◽  
...  

Abstract Studies done in non-hepatic cell lines, focusing on the interaction between HFE with TFR1 and β-2M proved insufficient to explain the discrepancies found in the clinical penetrance of hemochromatosis in subjects carrying the C282Y mutation. Our first goal was to investigate the role of HFE wild type (wt) and mutant proteins (C282Y and H63D) in a human hepatic cell line, focusing on the cellular localization and interaction of HFE with the expression of other iron related proteins. HFE mutant C282Y was found to be retained in the endoplasmic reticulum (ER). Thus, in addition, we investigated the effect of HFE wt and mutant proteins on Calreticulin, which is a chaperon protein that responds to ER stress and has a protective effect on oxidative damage in some cell lines. Here we report setting up a stable transfection of wt- and mutant-HFE in a hepatic cell line (HepG2) and examine the intracellular distribution of wt- and HFE mutants, their effect on iron intake independently of TFR1 and on the expression of other iron and ER stress response genes, namely Hepcidin and Calreticulin. In addition, we validated some of the novel effects of HFE on Calreticulin using peripheral blood mononuclear cells from HFE patients. The localization of the HFE variants was analyzed using KDEL and Golgin-97 as ER and the Golgi complex markers, respectively. HFE C282Y shows a high degree of overlap with the ER markers, confirming a retention of this variant in this organelle. Over-expression of the HFE wt impaired the intake of 55Fe relatively to transfected control cells (P<0.008) independently of TFR1, as demonstrated by RNAi silencing. Hamp RNA expression was decreased in cells over expressing C282Y in comparison to HFE wt cells (P<0.011). Finally over-expression of HFE wt decreases Calreticulin mRNA, whereas the C282Y had an opposite effect, compared to the control cell line. A similar result was observed in peripheral blood mononuclear cells (PMBC) of C282Y homozygous HFE patients, compared to wild type blood donors (P<0.006). Interestingly, this data suggest that synthesis of the HFE mutant C282Y triggers a protective effect on oxidative damage mediated by Calreticulin. In fact, HepG2 cells over-expressing C282Y showed lower levels of ROS than HFE wt (P<0.004). This observation might contribute to explain some of the discrepancies seen in the clinical penetrance of the disease in C282Y carrying subjects. The direct effect of the mutant HFE C282Y on mRNA expression of hepcidin also demonstrated here for the first time corroborates and provides a molecular basis for earlier reports of low hepcidin levels in HH patients and in Hfe-KO mice.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1367-1367
Author(s):  
Adam J Bryant ◽  
Catalina A Palma ◽  
Mark Lutherborrow ◽  
Vivek Jayaswal ◽  
Yee Hwa Yang ◽  
...  

Abstract Abstract 1367 Acute Myeloid Leukaemia (AML) with a mutation in the Nucleophosmin1 gene (NPM1c+) accounts for one of the largest subtypes of AML, with an unknown etiology. MicroRNA dysregulation has now been implicated in the oncogenesis of many cancers including AML. We sought to investigate the role of microRNAs in the initiation and development of AML with the NPM1c+ mutation. MicroRNA profiling of bone marrow samples from 28 AML patients and confirmation by qRT-PCR demonstrated a unique microRNA signature in AML-NPM1c+ samples dominated by miR-10a over-expression of 19.6-fold compared to Nucleophosmin1 wild type (NPM1) samples. Functional assessments were performed in the human OCI-AML3 cell line, which is the only cell line to harbour NPM1c+. miR-10a repression was induced by transfection with miRCURY LNA microRNA knockdown probes (Exiqon). Cell growth (MTS) assay demonstrated a significant decrease of 19% in miR-10a knockdown cells compared to the Scrambled control. AnnexinV and Caspase 3 assays assessed the effect of miR-10a knockdown on apoptosis. miR-10a knockdown increased the proportion of AnnexinV positive events when compared to control treated cells by 34.9% and 39.3% at 24 and 48 hours respectively, but had no effect on Caspase 3 expression. Proliferation (BrdU uptake) assays did not show a change, however, clonogenic assays demonstrated a 26.1% decrease in colony number in miR-10a knockdown cells compared to the control. Potential mechanisms were elucidated by determining miR-10a mRNA targets in silico and confirmed by luciferase reporter assays. These included ARNT, GTFH1, ID4, KLF4, MAPRE1, NR4A3, RB1CC1 and TFAP2C. In this study, we have demonstrated that miR-10a was highly differentially expressed between AML-NPM1c+ cells compared to leukaemic cells bearing wild type NPM1. Knockdown of miR-10a in OCI-AML3 cells resulted in increased cell death as detected by AnnexinV binding (but not Caspase 3, indicating an effect independent of the classical apoptotic pathways) and reduced clonogenic capacity. These effects are thought to occur through miR-10a mediated modulation of ARNT, GTFH1, ID4, KLF4, MAPRE1, NR4A3, RB1CC1 and TFAP2C, all of which are associated with neoplastic transformation. Taken together, our results suggest that aberrant miR-10a over-expression in AML-NPM1c+ patients promotes cell survival. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document