scholarly journals The Retention Mechanism of Technetium-99m-HM-PAO: Intracellular Reaction with Glutathione

1988 ◽  
Vol 8 (1_suppl) ◽  
pp. S4-S12 ◽  
Author(s):  
Rudi D. Neirinckx ◽  
James F. Burke ◽  
Roger C. Harrison ◽  
Alan M. Forster ◽  
Allan R. Andersen ◽  
...  

Preparations of d,l- and meso-hexamethylpropyleneamine oxime (HM-PAO) labeled with technetium-99m were added to rat brain homogenates diluted with phosphate buffer (l: 10). The conversion of d,l-HM-PAO to hydrophilic forms took place with an initial rate constant of 0.12 min−1. Incubation of the brain homogenate with 2% diethyl maleate for 5 h decreased the homogenate's measured glutathione (GSH) concentration from 160 to 16 μ M and decreased the conversion rate to 0.012 min−1. Buffered aqueous solutions of glutathione rapidly converted the HM-PAO tracers to hydrophilic forms having the same chromatographic characteristics as found in the brain homogenates. The rate constant for the conversion reaction of d,l-HM-PAO in GSH aqueous solution was 208 and 317 L/mol/min in two different assay systems and for meso-HM-PAO the values were 14.7 and 23.2 L/mol/min, respectively. Rat brain has a GSH concentration of about 2.3 m M and the conversion of the d,l-HM-PAO due to GSH alone should proceed with a rate constant of 0.48 to 0.73 min−1 and be correspondingly 14-fold slower for meso-HM-PAO. In human brain, the in vivo data of Lassen et al. show a conversion rate constant of 0.80 min−1. This correspondence of values supports the notion that GSH may be important for the in vivo conversion of 99mTc-labeled HM-PAO to hydrophilic forms and may be the mechanism of trapping in brain and other cells. A kinetic model for the trapping of d,l- and meso-HM-PAO in tissue is developed that is based on data of GSH concentration in various organs. This model predicts that the d,l form rapidly reaches a steady state in tissue and the tissue distribution reflects a pattern dominated by blood flow. For the meso form, the model predicts that steady state is reached more slowly and the tissue distribution reflects a pattern dominated by glutathione concentration.

Author(s):  
Tomas T. Roos ◽  
Megg G. Garcia ◽  
Isak Martinsson ◽  
Rana Mabrouk ◽  
Bodil Israelsson ◽  
...  

AbstractThe amyloid-beta peptide (Aβ) is thought to have prion-like properties promoting its spread throughout the brain in Alzheimer’s disease (AD). However, the cellular mechanism(s) of this spread remains unclear. Here, we show an important role of intracellular Aβ in its prion-like spread. We demonstrate that an intracellular source of Aβ can induce amyloid plaques in vivo via hippocampal injection. We show that hippocampal injection of mouse AD brain homogenate not only induces plaques, but also damages interneurons and affects intracellular Aβ levels in synaptically connected brain areas, paralleling cellular changes seen in AD. Furthermore, in a primary neuron AD model, exposure of picomolar amounts of brain-derived Aβ leads to an apparent redistribution of Aβ from soma to processes and dystrophic neurites. We also observe that such neuritic dystrophies associate with plaque formation in AD-transgenic mice. Finally, using cellular models, we propose a mechanism for how intracellular accumulation of Aβ disturbs homeostatic control of Aβ levels and can contribute to the up to 10,000-fold increase of Aβ in the AD brain. Our data indicate an essential role for intracellular prion-like Aβ and its synaptic spread in the pathogenesis of AD.


Author(s):  
Jiankang Liu

Traditional Chinese Medicine (TCM) modernization has been proposed for many years, but the progress is still slow due to both ideological and technical obstacles. When I went to Japan in 1989, I found Japan has made a great progress on TCM by using modern technology. Therefore, I have studied a fine extract prepared from medicinal herbs (renamed Yi-Zhi-Yi-Shou, YZYS), a prescription of Dowager Cixi’s Yanling-Yishou-Dan of Qing Dynasty, with the current drug investigation strategies. I examined its antioxidant activity both in vitro and in vivo. The in-vitro studies found that YZYS possesses strong antioxidant capacity, such as scavenging various kinds of free radicals, and inhibits free radical-induced peroxidation of brain homogenate, microsomes, mitochondria, amino acids, deoxyribose and DNA. The in-vivo study with immobilization-induced emotional stress in rats, showed that YZYS effectively inhibits stress-induced stomach ulcers and oxidative damage in plasma and the brain. In addition, YZYS is shown to be non-toxic in both acute and chronic toxicity tests. These studies demonstrate that YZYS is a potent natural antioxidant and offer theoretical evidence for the beneficial effect of YZYS on health and brain functions, and that TCM prescriptions can be studied scientifically as modern medical drugs.


1989 ◽  
Vol 264 (2) ◽  
pp. 555-562 ◽  
Author(s):  
C Andriamampandry ◽  
L Freysz ◽  
J N Kanfer ◽  
H Dreyfus ◽  
R Massarelli

The incubation of neurons from chick embryos in primary culture with [3H]ethanolamine revealed the conversion of this base into monomethyl, dimethyl and choline derivatives, including the corresponding free bases. Labelling with [methyl-3H]monomethylethanolamine and [methyl-3H]dimethylethanolamine supported the conclusion that in chick neuron cultures, phosphoethanolamine appears to be the preferential substrate for methylation, rather than ethanolamine or phosphatidylethanolamine. The methylation of the latter two compounds, in particular that of phosphatidylethanolamine, was seemingly stopped at the level of their monomethyl derivatives. Fetal rat neurons in primary culture incubated with [3H]ethanolamine showed similar results to those observed with chick neurones. However, phosphoethanolamine and phosphatidylethanolamine and, to a lesser extent, free ethanolamine, appeared to be possible substrates for methylation reactions. The methylation of water-soluble ethanolamine compounds de novo was further confirmed by experiments performed in vivo by intraventricular injection of [3H]ethanolamine. Phosphocholine and the monomethyl and dimethyl derivatives of ethanolamine were detected in the brain 15 min after injection.


2013 ◽  
Vol 304 (3) ◽  
pp. C240-C247 ◽  
Author(s):  
Amy S. Yu ◽  
Bruce A. Hirayama ◽  
Gerald Timbol ◽  
Jie Liu ◽  
Ana Diez-Sampedro ◽  
...  

Na+-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-4-deoxy-4-[18F]fluoro-d-glucopyranoside (Me-4-FDG) with ex vivo autoradiography and immunohistochemistry, we mapped in vivo the regional distribution of functional SGLTs in rat brain. Since Me-4-FDG is not a substrate for GLUT1 at the blood-brain barrier (BBB), in vivo delivery of the probe into the brain was achieved after opening of the BBB by an established procedure, osmotic shock. Ex vivo autoradiography showed that Me-4-FDG accumulated in regions of the cerebellum, hippocampus, frontal cortex, caudate nucleus, putamen, amygdala, parietal cortex, and paraventricular nucleus of the hypothalamus. Little or no Me-4-FDG accumulated in the brain stem. The regional accumulation of Me-4-FDG overlapped the distribution of SGLT1 protein detected by immunohistochemistry. In summary, after the BBB is opened, the specific substrate for SGLTs, Me-4-FDG, enters the brain and accumulates in selected regions shown to express SGLT1 protein. This localization and the sensitivity of these neurons to anoxia prompt the speculation that SGLTs may play an essential role in glucose utilization under stress such as ischemia. The expression of SGLTs in the brain raises questions about the potential effects of SGLT inhibitors under development for the treatment of diabetes.


2015 ◽  
Vol 35 (12) ◽  
pp. 1930-1936 ◽  
Author(s):  
Toshimitsu Okamura ◽  
Maki Okada ◽  
Tatsuya Kikuchi ◽  
Hidekatsu Wakizaka ◽  
Ming-Rong Zhang

A disturbance in redox balance has been implicated in the pathogenesis of a number of diseases. This study sought to examine the feasibility of imaging brain redox status using a 11C-labeled dihydroquinoline derivative ([11C]DHQ1) for positron emission tomography (PET). The lipophilic PET tracer [11C]DHQ1 was rapidly oxidized to its hydrophilic form in mouse brain homogenate. The redox modulators diphenyleneiodonium and apocynin significantly reduced the initial velocity of [11C]DHQ1 oxidation, and apocynin also caused concentration-dependent inhibition of the initial velocity. Moreover, [11C]DHQ1 readily entered the brain by diffusion after administration and underwent oxidation into the hydrophilic cationic form, which then slowly decreased. By contrast, apocynin treatment inhibited the in vivo oxidation of [11C]DHQ1 to the hydrophilic cationic form, leading to a rapid decrease of radioactivity in the brain. Thus, the difference in the [11C]DHQ1 kinetics reflects the alteration in redox status caused by apocynin. In conclusion, [11C]DHQ1 is a potential PET tracer for imaging of redox status in the living brain.


1991 ◽  
Vol 11 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Vincent J. Cunningham ◽  
Susan P. Hume ◽  
Gary R. Price ◽  
Randall G. Ahier ◽  
Jill E. Cremer ◽  
...  

The regional binding of the opiate receptor ligand diprenorphine has been examined in rat brain both in vivo and in vitro. The time course of total label in specific brain regions was followed up to 2 h after intravenous bolus injection of [3H]diprenorphine, with or without a pulse chase of unlabelled diprenorphine at 30 min. In addition, total label was measured 30 min after injection of labelled diprenorphine at nontracer concentrations over a range of specific activities. Total data sets for each region were fitted simultaneously to a compartmental model to give estimates of maximal binding capacity (Bmax), the second-order apparent association rate constant, and the first-order dissociation rate constant of the receptor-ligand complex. The model incorporated the use of a reference region with low specific binding (cerebellum). The binding of diprenorphine to rat brain homogenates was measured in vitro under equilibrium conditions at 37°C, pH 7.4, in the presence and absence of naloxone, to give corresponding regional estimates of Bmax and the half-saturation constant Kd The results showed a close correlation between in vitro and in vivo regional estimates of Bmax over a wide range. There were no significant interregional differences either in Kd in vitro or in the Kd derived from the in vivo analysis, although in vitro and in vivo estimates differed by an order of magnitude. This work was carried out as part of a validation study with a view to the application of the compartmental model to data obtained in vivo in humans using positron emission tomography, when successive studies over a range of specific activities are not feasible. Restriction of the rat data to tracer alone and pulse chase protocols showed that the compartmental model gave regional estimates of the combined forward rate constant consistent with estimates obtained using the complete data set.


2017 ◽  
Vol 10 (04) ◽  
pp. 1740001 ◽  
Author(s):  
Yuan Zhao ◽  
Zihui Chi ◽  
Lin Huang ◽  
Zhu Zheng ◽  
Jinge Yang ◽  
...  

We present for the first time in vivo imaging of rat brain using microwave-induced thermoacoustic tomography (TAT). The in vivo imaging of rat brain was realized through an unconventional delivery of microwave energy from the front of rat brain (while the transducer was scanned along coronal plane of the animal brain), which maximized the microwave penetration into the brain. In addition, we found that the imaging contrast was highly dependent on the direction of the electric field polarization (EFP) and that more tissue structures/compositions could be revealed when both [Formula: see text]- and [Formula: see text]-EFPs were used for TAT. The in vivo TAT images of rat brain obtained were compared with the 3.0 T MRI images and histological photographs, and numerous important brain anatomical structures were identified. An example of our TAT approach for imaging a foreign object embedded in a rat brain was also demonstrated. This study suggests that TAT has a great potential to be used in neuroscience studies and in noninvasive imaging of brain disorders.


1987 ◽  
Vol 244 (2) ◽  
pp. 325-330 ◽  
Author(s):  
M B Lakher ◽  
R J Wurtman

We examined the formation in vivo of molecular subspecies of brain phosphatidylcholine (PC) via the phospholipid-methylation pathway. [3H]Methionine was infused into a lateral cerebral ventricle, and 3H-labelled PC was isolated from brains of rats 0.1-18 h after the infusions. Three major subspecies of this PC, differing in their fatty acid compositions, were separated on silver-impregnated t.l.c. plates, and the proportions of radioactivities in these three PC fractions were determined. The results indicate that newly-formed PC synthesized by methylation of phosphatidylethanolamine at 0.1 h after [3H]methionine contains a significantly higher proportion of polyunsaturated subspecies (i.e. those with six or four double bonds) than does PC obtained later times after injection of [3H]methionine. This change in the composition of 3H-labelled brain PC occurs gradually and is not due to an influx of radioactive PC from the periphery. Our data suggest that polyunsaturated PC (hexaenes and tetraenes) produced in the brain by methylation of phosphatidylethanolamine turns over faster than does that containing more-saturated fatty acids.


1995 ◽  
Vol 305 (1) ◽  
pp. 329-336 ◽  
Author(s):  
K Kanamori ◽  
B D Ross

The in vivo activity of phosphate-activated glutaminase (PAG) was measured in the brain of hyperammonaemic rat by 15N n.m.r. Brain glutamine was 15N-enriched by intravenous infusion of 15NH4+ until the concentration of [5-15N]glutamine reached 6.1 mumol/g. Further glutamine synthesis was inhibited by intraperitoneal injection of methionine-DL-sulphoximine, an inhibitor of glutamine synthetase, and the infusate was changed to 14NH4+ during observation of decrease in brain [5-15N]glutamine due to PAG and other glutamine utilization pathways. Progressive decrease in brain [5-15N]glutamine, PAG-catalysed production of 15NH4+ and its subsequent assimilation into glutamate by glutamate dehydrogenase were monitored in vivo by 15N n.m.r. Brain [5-15N]glutamine (15N enrichment of 0.35-0.50) decreased at a rate of 1.2 mumol/h per g of brain. The in vivo PAG activity, determined from the observed rate and the quantity of 15NH4+ produced and subsequently assimilated into glutamate and aspartate, was 0.9-1.3 mumol/h per g. This activity is less than 1.1% of the reported activity in vitro measured in rat brain homogenate at a 10 mM concentration of the activator Pi. Inhibition by ammonia (brain level 1.4 mumol/g) alone does not account for the observed low activity in vivo. The result strongly suggests that, in intact brain, PAG activity is maintained at a low level by a suboptimal in situ concentration of Pi and the strong inhibitory effect of glutamate. The observed PAG activity in vivo is lower than the reported in vivo activity of glutamate decarboxylase which converts glutamate into gamma-aminobutyrate (GABA). The result suggests that PAG-catalysed hydrolysis of glutamine is not the sole provider of glutamate used for GABA synthesis.


Sign in / Sign up

Export Citation Format

Share Document