scholarly journals Glomerular epithelial, mesangial, and endothelial cell lines from transgenic mice

1988 ◽  
Vol 33 (3) ◽  
pp. 677-684 ◽  
Author(s):  
Karen Mackay ◽  
Liliane J. Striker ◽  
Sharon Elliot ◽  
Carl A. Pinkert ◽  
Ralph L. Brinster ◽  
...  
Author(s):  
Chun Gao ◽  
Ping Wu ◽  
Lan Yu ◽  
Liting Liu ◽  
Hong Liu ◽  
...  

AbstractIntegration of high-risk HPV genomes into cellular chromatin has been confirmed to promote cervical carcinogenesis, with HPV16 being the most prevalent high-risk type. Herein, we evaluated the therapeutic effect of the CRISPR/Cas9 system in cervical carcinogenesis, especially for cervical precancerous lesions. In cervical cancer/pre-cancer cell lines, we transfected the HPV16 E7 targeted CRISPR/Cas9, TALEN, ZFN plasmids, respectively. Compared to previous established ZFN and TALEN systems, CRISPR/Cas9 has shown comparable efficiency and specificity in inhibiting cell growth and colony formation and inducing apoptosis in cervical cancer/pre-cancer cell lines, which seemed to be more pronounced in the S12 cell line derived from the low-grade cervical lesion. Furthermore, in xenograft formation assays, CRISPR/Cas9 inhibited tumor formation of the S12 cell line in vivo and affected the corresponding protein expression. In the K14-HPV16 transgenic mice model of HPV-driven spontaneous cervical carcinogenesis, cervical application of CRISPR/Cas9 treatment caused mutations of the E7 gene and restored the expression of RB, E2F1, and CDK2, thereby reversing the cervical carcinogenesis phenotype. In this study, we have demonstrated that CRISPR/Cas9 targeting HPV16 E7 could effectively revert the HPV-related cervical carcinogenesis in vitro, as well as in K14-HPV16 transgenic mice, which has shown great potential in clinical treatment for cervical precancerous lesions.


2021 ◽  
Vol 9 (6) ◽  
pp. 1305
Author(s):  
Carlos Alonso Domínguez-Alemán ◽  
Luis Alberto Sánchez-Vargas ◽  
Karina Guadalupe Hernández-Flores ◽  
Andrea Isabel Torres-Zugaide ◽  
Arturo Reyes-Sandoval ◽  
...  

A common hallmark of dengue infections is the dysfunction of the vascular endothelium induced by different biological mechanisms. In this paper, we studied the role of recombinant NS1 proteins representing the four dengue serotypes, and their role in promoting the expression and release of endocan, which is a highly specific biomarker of endothelial cell activation. We evaluated mRNA expression and the levels of endocan protein in vitro following the stimulation of HUVEC and HMEC-1 cell lines with recombinant NS1 proteins. NS1 proteins increase endocan mRNA expression 48 h post-activation in both endothelial cell lines. Endocan mRNA expression levels were higher in HUVEC and HMEC-1 cells stimulated with NS1 proteins than in non-stimulated cells (p < 0.05). A two-fold to three-fold increase in endocan protein release was observed after the stimulation of HUVECs or HMEC-1 cells with NS1 proteins compared with that in non-stimulated cells (p < 0.05). The blockade of Toll-like receptor 4 (TLR-4) signaling on HMEC-1 cells with an antagonistic antibody prevented NS1-dependent endocan production. Dengue-infected patients showed elevated serum endocan levels (≥30 ng/mL) during early dengue infection. High endocan serum levels were associated with laboratory abnormalities, such as lymphopenia and thrombocytopenia, and are associated with the presence of NS1 in the serum.


2007 ◽  
Vol 51 (2) ◽  
pp. 221-228 ◽  
Author(s):  
Sheng-rong Shen ◽  
Hai-ning Yu ◽  
Ping Chen ◽  
Jun-jie Yin ◽  
Yao-kang Xiong

2007 ◽  
Vol 192 (1) ◽  
pp. 83-86 ◽  
Author(s):  
Ana Sofia Rocha ◽  
Ricardo Marques ◽  
Inês Bento ◽  
Ricardo Soares ◽  
João Magalhães ◽  
...  

Thyroid cancer constitutes the most frequent endocrine neoplasia. Targeted expression of rearranged during transfection (RET)/papillary thyroid carcinoma (PTC) and V600E V-raf murine sarcoma viral oncogene homolog B1 (BRAF) to the thyroid glands of transgenic mice results in tumours similar to those of human PTC, providing evidence for the involvement of these oncogenes in PTC. Kato et al. developed a mouse model that mimics the full spectrum of the human follicular form of thyroid cancer (FTC). FTC rapidly develops in these mice through introduction of the thyroid hormone receptor β (THRB)PV mutant on the background of the inactivated THRB wt locus. Our aim was to verify if, in the context of human follicular thyroid carcinogenesis, THRB acted as a tumour suppressor gene. We screened for mutations of the THRB gene in the hot-spot region, spanning exons 7–10, in 51 thyroid tumours and six thyroid cancer cell lines by PCR and direct sequencing. We did not find mutations in any of the tumours or cell lines analysed. Our findings suggest that, in contrast to the findings on the THRB-mutant transgenic mice, THRB gene mutations are not a relevant mechanism for human thyroid carcinogenesis.


2000 ◽  
Vol 20 (6) ◽  
pp. 1443-1451 ◽  
Author(s):  
Giovanna Balconi ◽  
Raffaella Spagnuolo ◽  
Elisabetta Dejana

Cell ◽  
1987 ◽  
Vol 51 (4) ◽  
pp. 529-537 ◽  
Author(s):  
Victoria L. Bautch ◽  
Sachiko Toda ◽  
John A. Hassell ◽  
Douglas Hanahan

2001 ◽  
Vol 15 (5) ◽  
pp. 734-746 ◽  
Author(s):  
Christine C. Quirk ◽  
Kristen L. Lozada ◽  
Ruth A. Keri ◽  
John H. Nilson

Abstract Reproduction depends on regulated expression of the LHβ gene. Tandem copies of regulatory elements that bind early growth response protein 1 (Egr-1) and steroidogenic factor 1 (SF-1) are located in the proximal region of the LHβ promoter and make essential contributions to its activity as well as mediate responsiveness to GnRH. Located between these tandem elements is a single site capable of binding the homeodomain protein Pitx1. From studies that employ overexpression paradigms performed in heterologous cell lines, it appears that Egr-1, SF-1, and Pitx1 interact cooperatively through a mechanism that does not require the binding of Pitx1 to its site. Since the physiological ramifications of these overexpression studies remain unclear, we reassessed the requirement for a Pitx1 element in the promoter of the LHβ gene using homologous cell lines and transgenic mice, both of which obviate the need for overexpression of transcription factors. Our analysis indicated a striking requirement for the Pitx1 regulatory element. When assayed by transient transfection using a gonadotrope-derived cell line (LβT2), an LHβ promoter construct harboring a mutant Pitx1 element displayed attenuated transcriptional activity but retained responsiveness to GnRH. In contrast, analysis of wild-type and mutant expression vectors in transgenic mice indicated that LHβ promoter activity is completely dependent on the presence of a functional Pitx1 binding site. Indeed, the dependence on an intact Pitx1 binding site in transgenic mice is so strict that responsiveness to GnRH is also lost, suggesting that the mutant promoter is inactive. Collectively, our data reinforce the concept that activity of the LHβ promoter is determined, in part, through highly cooperative interactions between SF-1, Egr-1, and Pitx1. While Egr-1 can be regarded as a key downstream effector of GnRH, and Pitx1 as a critical partner that activates SF-1, our data firmly establish that the Pitx1 element plays a vital role in permitting these functions to occur in vivo.


Sign in / Sign up

Export Citation Format

Share Document