scholarly journals Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core

Nature ◽  
2009 ◽  
Vol 461 (7263) ◽  
pp. 507-510 ◽  
Author(s):  
Joachim Elsig ◽  
Jochen Schmitt ◽  
Daiana Leuenberger ◽  
Robert Schneider ◽  
Marc Eyer ◽  
...  
Keyword(s):  
The Holocene ◽  
2011 ◽  
Vol 21 (5) ◽  
pp. 715-722 ◽  
Author(s):  
John F. Boyle ◽  
Marie-José Gaillard ◽  
Jed O. Kaplan ◽  
John A. Dearing

An evaluation of modelled estimates for C release following early land clearance at the global level based on new model assumptions suggests that earlier studies may have underestimated its magnitude, chiefly because of underestimation of the mid-Holocene global population. Alternative information sources for population and land utilisation support both a greater total CO2 release and a greater Neolithic contribution. Indeed, we show that the quantity of terrestrial C release due to early farming, even using the most conservative assumptions, greatly exceeds the net terrestrial C release estimated by inverse modelling of ice core data by Elsig et al. (Elsig J, Schmitt J, Leuenberger D, Schneider R, Eyer M, Leuenberger M et al. (2009) Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461: 507–510), though uncertainty about past global population estimates precludes calculation of a precise value.


2010 ◽  
Vol 4 (3) ◽  
pp. 1343-1363 ◽  
Author(s):  
P. Ginot ◽  
U. Schotterer ◽  
W. Stichler ◽  
M. A. Godoi ◽  
B. Francou ◽  
...  

Abstract. The comparison of two shallow ice cores recovered in 1999 and 2000 from the same place on Chimborazo summit glacier revealed the influence of the coincident Tungurahua volcanic eruption on their stable isotope and chemical records. The surface snow melting and water percolation induced from the ash deposition caused a preferential elution and re-localization of certain ionic species, while the stable isotope records were not very affected. Additionally, the comparison of the ionic amount and some selected ratios preserved along the ice core column reports under which processes the chemical species are introduced in the snow pack, as snow flake condensation nuclei, by atmospheric scavenging or by dry deposition. This preliminary study is essential for the interpretation of the deep Chimborazo ice core, or for other sites where surrounding volcanic activity may disturb the glaciochemical records.


2017 ◽  
Author(s):  
Didier Paillard

Abstract. Since the discovery of ice ages in the XIXth century, a central question of climate science has been to understand the respective role of the astronomical forcing and of greenhouse gases, in particular changes in the atmospheric concentration of carbon dioxide. Glacial-interglacial cycles have been shown to be paced by the astronomy with a dominant periodicity of 100 ka over the last million years, and a periodicity of 41 ka between roughly 1 and 3 million years before present (MyrBP). But the role and dynamics of the carbon cycle over the last 4 million years remain poorly understood. In particular, the transition into the Pleistocene about 2.8 MyrBP or the transition towards larger glaciations about 0.8 MyrBP (sometimes refered as the mid-pleistocene transition, or MPT) are not easily explained as direct consequences of the astronomical forcing. Some recent atmospheric CO2 reconstructions suggest slightly higher pCO2 levels before 1 MyrBP and a slow decrease over the last few million years (Bartoli et al., 2011; Seki et al., 2010). But the dynamics and the climatic role of the carbon cycle during the Plio-Pleistocene period remain unclear. Interestingly, the d13C marine records provide some critical information on the evolution of sources and sinks of carbon. In particular, a clear 400-kyr oscillation has been found at many different time periods and appears to be a robust feature of the carbon cycle throughout at least the last 100 Myr (eg. Paillard and Donnadieu, 2014). This oscillation is also visible over the last 4 Myr but its relationship with the eccentricity appears less obvious, with the occurrence of longer cycles at the end of the record, and a periodicity which therefore appears shifted towards 500-kyr (cf. Wang et al., 2004). In the following we present a simple dynamical model that provides an explanation for these carbon cycle variations, and how they relate to the climatic evolution over the last 4 Myr. It also gives an explanation for the lowest pCO2 values observed in the Antarctic ice core around 600–700 kyrBP. More generally, the model predicts a two-step decrease in pCO2 levels associated with the 2.4 Myr modulation of the eccentricity forcing. These two steps occur respectively at the Plio-Pleistocene transition and at the MPT, which strongly suggests that these transitions are astronomicaly forced through the dynamics of the carbon cycle.


2015 ◽  
Vol 15 (21) ◽  
pp. 30473-30509
Author(s):  
E. Schlosser ◽  
B. Stenni ◽  
M. Valt ◽  
A. Cagnati ◽  
J. G. Powers ◽  
...  

Abstract. At the East Antarctic deep ice core drilling site Dome C, daily precipitation measurements have been initiated in 2006 and are being continued until today. The amounts and stable isotope ratios of the precipitation samples as well as crystal types are determined. Within the measuring period, the two years 2009 and 2010 showed striking contrasting temperature and precipitation anomalies, particularly in the winter seasons. The reasons for these anomalies and their relation to stable isotope ratios are analysed using data from the mesoscale atmospheric model WRF (Weather Research and Forecasting Model) run under the Antarctic Mesoscale Prediction System (AMPS). 2009 was relatively warm and moist due to frequent warm air intrusions connected to amplification of Rossby waves in the circumpolar westerlies, whereas the winter of 2010 was extremely dry and cold. It is shown that while in 2010 a strong zonal atmospheric flow was dominant, in 2009 an enhanced meridional flow prevailed, which increased the meridional transport of heat and moisture onto the East Antarctic plateau and led to a number of high-precipitation/warming events at Dome C. This was also evident in a positive (negative) SAM index and a negative (positive) ZW3 index during the winter months of 2010 (2009). Changes in the frequency or seasonality of such event-type precipitation can lead to a strong bias in the air temperature derived from stable water isotopes in ice cores.


2021 ◽  
Author(s):  
Pia Müller ◽  
Ulrich Heimhofer ◽  
Christian Ostertag-Henning

<p>The Oceanic Anoxic Event (OAE) 2 spanning the Cenomanian-Turonian boundary (93.5 Ma)<br>represents a major perturbation of the global carbon cycle and is marked by organic-rich<br>sediments deposited under oxygen-depleted conditions. In many studies the eruption of the<br>Caribbean LIP is considered to be the cause for rapidly increasing CO2 concentrations and<br>resulting global warming accompanied by widespread oceanic anoxia. In the Lower Saxony<br>Basin of northern Germany, the deposits of the OAE 2 are exposed in several industry drill<br>cores. In this study, the lower part of the OAE 2 has been studied in the HOLCIM 2011-3 drill<br>core. Sedimentary rocks are composed of limestones, marly limestones, marls and black<br>shales and have been analysed with a high-resolution stable isotope approach<br>(approximately one sample every 2 cm) combined with geochemical modelling. Using stable<br>carbon isotopes, bulk rock parameters and petrographic analysis, the onset of OAE 2 has<br>been investigated in detail. The high-resolution δ<sup>13</sup>C curve exhibits overall stable values<br>around 3 ‰ before the onset of the Plenus event. This background level is interrupted by<br>three short-lived and small but significant negative carbon isotope excursions (CIEs) down to<br>δ<sup>13</sup>C values of 2.5 ‰, 2.7 ‰ and 1.9 ‰. Immediately before the main rise in the Plenus bed,<br>a longer-lasting negative CIE down to 2.8 ‰ is observed, preceding the large positive CIE of<br>the OAE 2 to values of 5.2 ‰ over 33 ka. Thereafter, the δ<sup>13</sup>C values decrease to 3.5 ‰ over<br>a period of approximately 130 ka. The results can be correlated with the lower-resolution<br>data set of Voigt et al. (2008) but enable a more accurate characterization of the subtle<br>features of the CIE and hence events before and during this time interval. Carbon cycle<br>modelling with the modelling software SIMILE using a model based on Kump & Arthur (1999)<br>reveals that the negative excursion before the Plenus bed can be explained by a massive<br>volcanic pulse releasing of 0.95*10<sup>18</sup> mol CO2 within 14 ka. This amount corresponds to only<br>81 % of the calculated volume of CO<sub>2</sub> release during emplacement of the Caribbean LIP by<br>Joo et al. (2020). In the model the volcanic exhalation increases atmospheric CO<sub>2</sub><br>concentrations. This will increase global temperatures, intensify the hydrological cycle and<br>thus increase nutrient input into the ocean, resulting in an expansion of the oxygen minimum<br>zone, the development of anoxic conditions and an increase in the preservation potential for<br>organic material. In the model enhanced primary productivity and organic matter preservation<br>can be controlled by the implemented riverine phosphate input and the preservation factor for<br>organic matter. For the positive anomaly, the riverine phosphate input must be nearly<br>doubled (from 0.01 μmol/kg PO<sub>4 </sub>to 0.019 μmol/kg) for the period of the increasing δ<sup>13</sup>C<br>values (app. 33 ka), with a concomitant rise of the preservation factor from 1 % to 2 %. This<br>model scenario accurately reproduces the major features of the new high-resolution δ<sup>13</sup>C<br>record over the onset of the OAE 2 CIE.</p>


2003 ◽  
Vol 49 (166) ◽  
pp. 397-406 ◽  
Author(s):  
Alan W. Rempel ◽  
J. S. Wettlaufer

AbstractQuantitative ice-core paleoclimatology must account for post-depositional processes, such as vapor-phase diffusion in the firn. After pore close-off, diffusion continues to smooth the stable-isotope records δ18O and δD that are eventually recovered from the ice, leading to the loss of high-frequency information. Johnsen and others (1997) found much higher rates of diffusive smoothing in the Greenland Icecore Project (GRIP) Holocene ice than would be predicted by diffusion through solid ice alone, and Nye (1998) argued that transport through liquid veins might explain this apparent excess diffusion. However, the analysis of Johnsen and others (2000) indicates that the required vein dimensions may be unrealistically large. Here, we model the diffusion of stable isotopes in polycrystalline ice and show that the predictions of Nye (1998) and those of Johnsen and others (2000) actually represent two end-members in a range of potential behavior. Our model determines which of these asymptotic regimes more closely resembles the prevailing conditions and quantifies the role of pre-melted liquid in the smoothing of isotopic signals. The procedure thereby ties together the two approaches and provides a rostrum for accurate analysis of isotope records and paleotemperature reconstructions.


Polar Science ◽  
2017 ◽  
Vol 13 ◽  
pp. 23-32 ◽  
Author(s):  
István Gábor Hatvani ◽  
Markus Leuenberger ◽  
Balázs Kohán ◽  
Zoltán Kern

2017 ◽  
Vol 13 (9) ◽  
pp. 1259-1267 ◽  
Author(s):  
Didier Paillard

Abstract. Since the discovery of ice ages in the 19th century, a central question of climate science has been to understand the respective role of the astronomical forcing and of greenhouse gases, in particular changes in the atmospheric concentration of carbon dioxide. Glacial–interglacial cycles have been shown to be paced by the astronomy with a dominant periodicity of 100 ka over the last million years, and a periodicity of 41 ka between roughly 1 and 3 million years before present (Myr BP). But the role and dynamics of the carbon cycle over the last 4 million years remain poorly understood. In particular, the transition into the Pleistocene about 2.8 Myr BP or the transition towards larger glaciations about 0.8 Myr BP (sometimes referred to as the mid-Pleistocene transition, or MPT) are not easily explained as direct consequences of the astronomical forcing. Some recent atmospheric CO2 reconstructions suggest slightly higher pCO2 levels before 1 Myr BP and a slow decrease over the last few million years (Bartoli et al., 2011; Seki et al., 2010). But the dynamics and the climatic role of the carbon cycle during the Plio-Pleistocene period remain unclear. Interestingly, the δ13C marine records provide some critical information on the evolution of sources and sinks of carbon. In particular, a clear 400 kyr oscillation has been found at many different time periods and appears to be a robust feature of the carbon cycle throughout at least the last 100 Myr (e.g. Paillard and Donnadieu, 2014). This oscillation is also visible over the last 4 Myr but its relationship with the eccentricity appears less obvious, with the occurrence of longer cycles at the end of the record, and a periodicity which therefore appears shifted towards 500 kyr (see Wang et al., 2004). In the following we present a simple dynamical model that provides an explanation for these carbon cycle variations, and how they relate to the climatic evolution over the last 4 Myr. It also gives an explanation for the lowest pCO2 values observed in the Antarctic ice core around 600–700 kyr BP. More generally, the model predicts a two-step decrease in pCO2 levels associated with the 2.4 Myr modulation of the eccentricity forcing. These two steps occur respectively at the Plio-Pleistocene transition and at the MPT, which strongly suggests that these transitions are astronomically forced through the dynamics of the carbon cycle.


2020 ◽  
Author(s):  
Anna Lene Claussen ◽  
Axel Munnecke ◽  
Andrej Ernst

<p>A small but rather unique reef type occurs in the Silurian of Gotland mainly composed of encrusting bryozoans and microbial crusts, forming a complex intergrowth, which can be characterized as bryozoan-rich stromatolites, so-called “bryoliths”. The alternation of bryozoans and microbes is assumingly driven by a repeated change of hostile and more favorable conditions for metazoan growth. The surfaces of the reef bodies are composed of characteristic cauliflower structures, created by bryozoans, which are performing a finger-like growth in every direction. Other common features are bioerosion (mostly by bivalves), enigmatic encrusting echinoderms, a high abundance of organophosphatic fossil remains such as bryozoan pearls and discinid brachiopods, a high abundance of epi- and endobionts, vadose silt, and gypsum pseudomorphs.</p><p>Altogether, ten of these special reefs have been identified on Gotland so far. All of them were formed during periods of strong positive δ <sup>13</sup>C excursions at the Ireviken and Lau isotope excursions in the early Wenlock and late Ludlow, respectively. The unusual features of the bryoliths as well as their occurrence exclusively during strong positive δ <sup>13</sup>C excursions indicate very specific environmental requirements. This leads to the assumption, that whatever caused the isotope excursions also has affected these reef systems. Hence, investigating the bryoliths will hopefully increase our knowledge to what has happened during the – still enigmatic – Silurian stable isotope excursions.</p>


Sign in / Sign up

Export Citation Format

Share Document