scholarly journals Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation

2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Carla Schmidt ◽  
Min Zhou ◽  
Hazel Marriott ◽  
Nina Morgner ◽  
Argyris Politis ◽  
...  

Abstract F-type ATPases are highly conserved enzymes used primarily for the synthesis of ATP. Here we apply mass spectrometry to the F1FO-ATPase, isolated from spinach chloroplasts, and uncover multiple modifications in soluble and membrane subunits. Mass spectra of the intact ATPase define a stable lipid ‘plug’ in the FO complex and reveal the stoichiometry of nucleotide binding in the F1 head. Comparing complexes formed in solution from an untreated ATPase with one incubated with a phosphatase reveals that the dephosphorylated enzyme has reduced nucleotide occupancy and decreased stability. By contrasting chemical cross-linking of untreated and dephosphorylated forms we show that cross-links are retained between the head and base, but are significantly reduced in the head, stators and stalk. Conformational changes at the catalytic interface, evidenced by changes in cross-linking, provide a rationale for reduced nucleotide occupancy and highlight a role for phosphorylation in regulating nucleotide binding and stability of the chloroplast ATPase.


2005 ◽  
Vol 387 (3) ◽  
pp. 695-702 ◽  
Author(s):  
Bill X. HUANG ◽  
Chhabil DASS ◽  
Hee-Yong KIM

Mass spectrometry with chemical cross-linking was used to probe the conformational changes of HSA (human serum albumin) in solution on interaction with monounsaturated OA (oleic acid) or polyunsaturated AA (arachidonic acid) or DHA (docosahexaenoic acid). Fatty acid-free or -bound HSA was modified with lysine-specific cross-linkers and digested with trypsin. Cross-linked peptides were analysed by nano-electrospray ionization MS to localize the sites of cross-linking. Our data indicated that a local conformational change involving movement of the side chains of Lys-402 of subdomain IIIA or Lys-541 of subdomain IIIB occurred upon binding of all three fatty acids. Our data also indicated that the side chains of Lys-205 (IIA) and Lys-466 (IIIA) moved closer towards each other upon binding AA or DHA, but not OA, suggesting that the conformations of HSA when bound to mono- and poly-unsaturated fatty acids are distinctively different. While these observations agreed with previous X-ray crystallographic studies, the distances between ε-amino groups of most cross-linked lysine pairs were shorter than the crystal structure predicted, possibly reflecting a discrepancy between the solution and crystal structures. This method can serve as a useful complement to X-ray crystallography, particularly in probing the structure of a protein in solution.



2007 ◽  
Vol 13 (4) ◽  
pp. 281-290 ◽  
Author(s):  
Petr Novak ◽  
Vladimir Havlicek ◽  
Peter J. Derrick ◽  
Kyle A. Beran ◽  
Sajid Bashir ◽  
...  

Calmodulin is an EF hand calcium binding protein. Its binding affinities to various protein/peptide targets often depend on the conformational changes induced by the binding of calcium. One such target is melittin, which binds tightly to calmodulin in the presence of calcium, and inhibits its function. Chemical cross-linking combined with Fourier transform ion cyclotron resonance mass spectrometry has been employed to investigate the coordination of calmodulin and melittin in the complex at different concentrations of calcium. This methodology can be used to monitor structural changes in proteins induced by ligand binding and to study the effects these changes have on non-covalent interactions between proteins. Cross-linking results indicate that the binding place of the first melittin in the calcium-free calmodulin form is the same as in the calcium-loaded calmodulin/melittin complex.



2019 ◽  
Vol 117 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Julian Mintseris ◽  
Steven P. Gygi

Detailed mechanistic understanding of protein complex function is greatly enhanced by insights from its 3-dimensional structure. Traditional methods of protein structure elucidation remain expensive and labor-intensive and require highly purified starting material. Chemical cross-linking coupled with mass spectrometry offers an alternative that has seen increased use, especially in combination with other experimental approaches like cryo-electron microscopy. Here we report advances in method development, combining several orthogonal cross-linking chemistries as well as improvements in search algorithms, statistical analysis, and computational cost to achieve coverage of 1 unique cross-linked position pair for every 7 amino acids at a 1% false discovery rate. This is accomplished without any peptide-level fractionation or enrichment. We apply our methods to model the complex between a carbonic anhydrase (CA) and its protein inhibitor, showing that the cross-links are self-consistent and define the interaction interface at high resolution. The resulting model suggests a scaffold for development of a class of protein-based inhibitors of the CA family of enzymes. We next cross-link the yeast proteasome, identifying 3,893 unique cross-linked peptides in 3 mass spectrometry runs. The dataset includes 1,704 unique cross-linked position pairs for the proteasome subunits, more than half of them intersubunit. Using multiple recently solved cryo-EM structures, we show that observed cross-links reflect the conformational dynamics and disorder of some proteasome subunits. We further demonstrate that this level of cross-linking density is sufficient to model the architecture of the 19-subunit regulatory particle de novo.



2018 ◽  
Vol 115 (44) ◽  
pp. 11162-11167 ◽  
Author(s):  
Bing Yang ◽  
Haifan Wu ◽  
Paul D. Schnier ◽  
Yansheng Liu ◽  
Jun Liu ◽  
...  

Chemical cross-linking mass spectrometry (CXMS) is being increasingly used to study protein assemblies and complex protein interaction networks. Existing CXMS chemical cross-linkers target only Lys, Cys, Glu, and Asp residues, limiting the information measurable. Here we report a “plant-and-cast” cross-linking strategy that employs a heterobifunctional cross-linker that contains a highly reactive succinimide ester as well as a less reactive sulfonyl fluoride. The succinimide ester reacts rapidly with surface Lys residues “planting” the reagent at fixed locations on protein. The pendant aryl sulfonyl fluoride is then “cast” across a limited range of the protein surface, where it can react with multiple weakly nucleophilic amino acid sidechains in a proximity-enhanced sulfur-fluoride exchange (SuFEx) reaction. Using proteins of known structures, we demonstrated that the heterobifunctional agent formed cross-links between Lys residues and His, Ser, Thr, Tyr, and Lys sidechains. This geometric specificity contrasts with current bis-succinimide esters, which often generate nonspecific cross-links between lysines brought into proximity by rare thermal fluctuations. Thus, the current method can provide diverse and robust distance restraints to guide integrative modeling. This work provides a chemical cross-linker targeting unactivated Ser, Thr, His, and Tyr residues using sulfonyl fluorides. In addition, this methodology yielded a variety of cross-links when applied to the complex Escherichia coli cell lysate. Finally, in combination with genetically encoded chemical cross-linking, cross-linking using this reagent markedly increased the identification of weak and transient enzyme–substrate interactions in live cells. Proximity-dependent cross-linking will dramatically expand the scope and power of CXMS for defining the identities and structures of protein complexes.



2016 ◽  
Vol 1 ◽  
pp. 5 ◽  
Author(s):  
Zhuo Chen ◽  
Lutz Fischer ◽  
Salman Tahir ◽  
Jimi-Carlo Bukowski-Wills ◽  
Paul Barlow ◽  
...  

Quantitative cross-linking/mass spectrometry (QCLMS) probes protein structural dynamics in solution by quantitatively comparing the yields of cross-links between different conformational statuses. We have used QCLMS to understand the final maturation step of the proteasome lid and also to elucidate the structure of complement C3(H2O). Here we benchmark our workflow using a structurally well-described reference system, the human complement protein C3 and its activated cleavage product C3b. We found that small local conformational changes affect the yields of cross-linking residues that are near in space while larger conformational changes affect the detectability of cross-links. Distinguishing between minor and major changes required robust analysis based on replica analysis and a label-swapping procedure. By providing workflow, code of practice and a framework for semi-automated data processing, we lay the foundation for QCLMS as a tool to monitor the domain choreography that drives binary switching in many protein-protein interaction networks.



2020 ◽  
Author(s):  
Christian Tüting ◽  
Claudio Iacobucci ◽  
Christian H. Ihling ◽  
Panagiotis L. Kastritis ◽  
Andrea Sinz

AbstractThe ribosome is not only a highly complex molecular machine that executes translation according to the central dogma of molecular biology, but also an exceptional specimen for testing and optimizing cross-linking/mass spectrometry (XL-MS) workflows. Due to its high abundance, ribosomal proteins are frequently identified in proteome-wide XL-MS studies of cells or cell extracts. Here, we performed in-depth cross-linking of the E. coli ribosome using the amine-reactive cross-linker diacetyl dibutyric urea (DSAU). We analyzed 143 E. coli ribosomal structures, mapping a total of 10,771 intramolecular distances for 126 cross-link-pairs and 3,405 intermolecular distances for 97 protein pairs. Remarkably, 44% of intermolecular cross-links covered regions that have not been resolved in any high-resolution E. coli ribosome structure and point to a plasticity of cross-linked regions. We systematically characterized all cross-links and discovered flexible regions, conformational changes, and stoichiometric variations in bound ribosomal proteins, and ultimately remodeled 2,057 residues (15,794 atoms) in total. Our working model explains more than 95% of all cross-links, resulting in an optimized E. coli ribosome structure based on the cross-linking data obtained. Our study might serve as benchmark for conducting biochemical experiments on newly modeled protein regions, guided by XL-MS. Data are available via ProteomeXchange with identifier PXD018935.



2018 ◽  
Author(s):  
Allan J. R. Ferrari ◽  
Fabio C. Gozzo ◽  
Leandro Martinez

<div><p>Chemical cross-linking/Mass Spectrometry (XLMS) is an experimental method to obtain distance constraints between amino acid residues, which can be applied to structural modeling of tertiary and quaternary biomolecular structures. These constraints provide, in principle, only upper limits to the distance between amino acid residues along the surface of the biomolecule. In practice, attempts to use of XLMS constraints for tertiary protein structure determination have not been widely successful. This indicates the need of specifically designed strategies for the representation of these constraints within modeling algorithms. Here, a force-field designed to represent XLMS-derived constraints is proposed. The potential energy functions are obtained by computing, in the database of known protein structures, the probability of satisfaction of a topological cross-linking distance as a function of the Euclidean distance between amino acid residues. The force-field can be easily incorporated into current modeling methods and software. In this work, the force-field was implemented within the Rosetta ab initio relax protocol. We show a significant improvement in the quality of the models obtained relative to current strategies for constraint representation. This force-field contributes to the long-desired goal of obtaining the tertiary structures of proteins using XLMS data. Force-field parameters and usage instructions are freely available at http://m3g.iqm.unicamp.br/topolink/xlff <br></p></div><p></p><p></p>



1988 ◽  
Vol 255 (3) ◽  
pp. 869-876 ◽  
Author(s):  
D J Steenkamp

The mitochondrial electron-transfer flavoprotein (ETF) is a heterodimer containing only one FAD. In previous work on the structure-function relationships of ETF, its interaction with the general acyl-CoA dehydrogenase (GAD) was studied by chemical cross-linking with heterobifunctional reagents [D. J. Steenkamp (1987) Biochem. J. 243, 519-524]. GAD whose lysine residues were substituted with 3-(2-pyridyldithio)propionyl groups was preferentially cross-linked to the small subunit of ETF, the lysine residues of which had been substituted with 4-mercaptobutyramidine (MBA) groups. This work was extended to the interaction of ETF with ETF-ubiquinone oxidoreductase (ETF-Q ox). ETF-Q ox was partially inactivated by modification with N-succinimidyl 3-(2-pyridyldithio)propionate to introduce pyridyl disulphide structures. A similar modification of ETF caused a large increase in the apparent Michaelis constant of ETF-Q ox for modified ETF owing to the loss of positive charge on some critical lysines of ETF. When ETF-Q ox was modified with 2-iminothiolane to introduce 4-mercaptobutyramidine groups, only a minor effect on the activity of the enzyme was observed. To retain the positive charges on the lysine residues of ETF, pyridyl disulphide structures were introduced by treating ETF with 2-iminothiolane in the presence of 2,2′-dithiodipyridyl. The electron-transfer activity of the resultant ETF preparation containing 4-(2-pyridyldithio)butyramidine (PDBA) groups was only slightly affected. When ETF-Q ox substituted with MBA groups was mixed with ETF bearing PDBA groups, at least 70% of the cross-links formed between the two proteins were between the small subunit of ETF and ETF-Q ox. ETF-Q ox, therefore, interacts predominantly with the same subunit of ETF as GAD. Variables which affect the selectivity of ETF-Q ox cross-linking to the subunits of ETF are considered.



Sign in / Sign up

Export Citation Format

Share Document