scholarly journals Cross-linking of the electron-transfer flavoprotein to electron-transfer flavoprotein-ubiquinone oxidoreductase with heterobifunctional reagents

1988 ◽  
Vol 255 (3) ◽  
pp. 869-876 ◽  
Author(s):  
D J Steenkamp

The mitochondrial electron-transfer flavoprotein (ETF) is a heterodimer containing only one FAD. In previous work on the structure-function relationships of ETF, its interaction with the general acyl-CoA dehydrogenase (GAD) was studied by chemical cross-linking with heterobifunctional reagents [D. J. Steenkamp (1987) Biochem. J. 243, 519-524]. GAD whose lysine residues were substituted with 3-(2-pyridyldithio)propionyl groups was preferentially cross-linked to the small subunit of ETF, the lysine residues of which had been substituted with 4-mercaptobutyramidine (MBA) groups. This work was extended to the interaction of ETF with ETF-ubiquinone oxidoreductase (ETF-Q ox). ETF-Q ox was partially inactivated by modification with N-succinimidyl 3-(2-pyridyldithio)propionate to introduce pyridyl disulphide structures. A similar modification of ETF caused a large increase in the apparent Michaelis constant of ETF-Q ox for modified ETF owing to the loss of positive charge on some critical lysines of ETF. When ETF-Q ox was modified with 2-iminothiolane to introduce 4-mercaptobutyramidine groups, only a minor effect on the activity of the enzyme was observed. To retain the positive charges on the lysine residues of ETF, pyridyl disulphide structures were introduced by treating ETF with 2-iminothiolane in the presence of 2,2′-dithiodipyridyl. The electron-transfer activity of the resultant ETF preparation containing 4-(2-pyridyldithio)butyramidine (PDBA) groups was only slightly affected. When ETF-Q ox substituted with MBA groups was mixed with ETF bearing PDBA groups, at least 70% of the cross-links formed between the two proteins were between the small subunit of ETF and ETF-Q ox. ETF-Q ox, therefore, interacts predominantly with the same subunit of ETF as GAD. Variables which affect the selectivity of ETF-Q ox cross-linking to the subunits of ETF are considered.

1987 ◽  
Vol 243 (2) ◽  
pp. 519-524 ◽  
Author(s):  
D J Steenkamp

The interaction between pig liver mitochondrial electron-transfer flavoprotein (ETF) and general acyl-CoA dehydrogenase (GAD) was investigated by means of the heterobifunctional reagent N-succinimidyl 3-(2-pyridyldithio)propionate. Neither ETF or GAD contained reactive thiol groups. The substitution of 9.4 lysine residues/FAD group in GAD with pyridyl disulphide structures did not affect the catalytic activity of the enzyme. Thiol groups were introduced into ETF by thiolation with methyl 4-mercaptobutyrimidate. ETF containing 10.5 reactive thiol groups/FAD group showed undiminished electron-acceptor activity with respect to GAD. The reaction of thiolated ETF and GAD containing pyridyl disulphide structures resulted in a decreased staining intensity of the small subunit of ETF on SDS/polyacrylamide-gel electrophoresis. Preferential cross-linking of the smaller subunit of ETF to GAD did not take place when ETF was first treated with SDS, but was unaffected by reduction of GAD by octanoyl-CoA.


2006 ◽  
Vol 188 (21) ◽  
pp. 7609-7616 ◽  
Author(s):  
Alicia Monroe ◽  
Peter Setlow

ABSTRACT The Bacillus subtilis spore coat protein GerQ is necessary for the proper localization of CwlJ, an enzyme important in the hydrolysis of the peptidoglycan cortex during spore germination. GerQ is cross-linked into high-molecular-mass complexes in the spore coat late in sporulation, and this cross-linking is largely due to a transglutaminase. This enzyme forms an ε-(γ-glutamyl) lysine isopeptide bond between a lysine donor from one protein and a glutamine acceptor from another protein. In the current work, we have identified the residues in GerQ that are essential for transglutaminase-mediated cross-linking. We show that GerQ is a lysine donor and that any one of three lysine residues near the amino terminus of the protein (K2, K4, or K5) is necessary to form cross-links with binding partners in the spore coat. This leads to the conclusion that all Tgl-dependent GerQ cross-linking takes place via these three lysine residues. However, while the presence of any of these three lysine residues is essential for GerQ cross-linking, they are not essential for the function of GerQ in CwlJ localization.


2018 ◽  
Vol 19 (10) ◽  
pp. 2928 ◽  
Author(s):  
Winfried Roseboom ◽  
Madhvi Nazir ◽  
Nils Meiresonne ◽  
Tamimount Mohammadi ◽  
Jolanda Verheul ◽  
...  

Cell division in bacteria is initiated by the polymerization of FtsZ at midcell in a ring-like structure called the Z-ring. ZapA and other proteins assist Z-ring formation and ZapA binds ZapB, which senses the presence of the nucleoids. The FtsZ–ZapA binding interface was analyzed by chemical cross-linking mass spectrometry (CXMS) under in vitro FtsZ-polymerizing conditions in the presence of GTP. Amino acids residue K42 from ZapA was cross-linked to amino acid residues K51 and K66 from FtsZ, close to the interphase between FtsZ molecules in protofilaments. Five different cross-links confirmed the tetrameric structure of ZapA. A number of FtsZ cross-links suggests that its C-terminal domain of 55 residues, thought to be largely disordered, has a limited freedom to move in space. Site-directed mutagenesis of ZapA reveals an interaction site in the globular head of the protein close to K42. Using the information on the cross-links and the mutants that lost the ability to interact with FtsZ, a model of the FtsZ protofilament–ZapA tetramer complex was obtained by information-driven docking with the HADDOCK2.2 webserver.


2020 ◽  
Vol 295 (7) ◽  
pp. 1973-1984
Author(s):  
Detao Gao ◽  
Mohammad Z. Ashraf ◽  
Lifang Zhang ◽  
Niladri Kar ◽  
Tatiana V. Byzova ◽  
...  

Apolipoprotein A-I (apoA-I) is cross-linked and dysfunctional in human atheroma. Although multiple mechanisms of apoA-I cross-linking have been demonstrated in vitro, the in vivo mechanisms of cross-linking are not well-established. We have recently demonstrated the highly selective and efficient modification of high-density lipoprotein (HDL) apoproteins by endogenous oxidized phospholipids (oxPLs), including γ-ketoalkenal phospholipids. In the current study, we report that γ-ketoalkenal phospholipids effectively cross-link apoproteins in HDL. We further demonstrate that cross-linking impairs the cholesterol efflux mediated by apoA-I or HDL3 in vitro and in vivo. Using LC-MS/MS analysis, we analyzed the pattern of apoprotein cross-linking in isolated human HDL either by synthetic γ-ketoalkenal phospholipids or by oxPLs generated during HDL oxidation in plasma by the physiologically relevant MPO-H2O2-NO2− system. We found that five histidine residues in helices 5–8 of apoA-I are preferably cross-linked by oxPLs, forming stable pyrrole adducts with lysine residues in the helices 3–4 of another apoA-I or in the central domain of apoA-II. We also identified cross-links of apoA-I and apoA-II with two minor HDL apoproteins, apoA-IV and apoE. We detected a similar pattern of apoprotein cross-linking in oxidized murine HDL. We further detected oxPL cross-link adducts of HDL apoproteins in plasma and aorta of hyperlipidemic LDLR−/− mice, including cross-link adducts of apoA-I His-165–apoA-I Lys-93, apoA-I His-154–apoA-I Lys-105, apoA-I His-154–apoA-IV Lys-149, and apoA-II Lys-30–apoE His-227. These findings suggest an important mechanism that contributes to the loss of HDL's atheroprotective function in vivo.


1997 ◽  
Vol 322 (2) ◽  
pp. 535-542 ◽  
Author(s):  
Lynda KNOTT ◽  
John F. TARLTON ◽  
Allen J. BAILEY

With age, the proximal sections of turkey leg tendons become calcified, and this phenomenon has led to their use as a model for collagen mineralization. Mineralizing turkey leg tendon was used in this study to characterize further the composition and cross-linking of collagen in calcified tissues. The cross-link profiles of mineralizing collagen are significantly different from those of other collagenous matrices with characteristically low amounts of hydroxylysyl-pyridinoline and the presence of lysyl-pyridinoline and pyrrolic cross-links. However, the presence of the immature cross-link precursors previously reported in calcifying tissues was not supported in the present study, and was found to be due to the decalcification procedure using EDTA. Analysis of tendons from young birds demonstrated differences in the cross-link profile which indicated a higher level of hydroxylation of specific triple-helical lysines involved in cross-linking of the proximal tendon. This may be related to later calcification, suggesting that this part of the tendon is predestined to be calcified. The minimal changes in lysyl hydroxylation in both regions of the tendon with age were in contrast with the large changes in the cross-link profile, indicating differential hydroxylation of the helical and telopeptide lysine residues. Changes with age in the collagen matrix, its turnover and thermal properties in both the proximal and distal sections of the tendon clearly demonstrate that a new and modified matrix is formed throughout the tendon, and that a different type of matrix is formed at each site.


1999 ◽  
Vol 77 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Ronald Kluger ◽  
Krisztina Paal ◽  
J Gordon Adamson

A new type of tetrafunctional reagent for cross-linking proteins has been prepared and used to modify human hemoglobin A. DPEE (1,2-bis{2-[3,5-bis(3,5-dibromosalicyloxycarbonyl) phenoxy]ethoxy}ethane)) has two separate pairs of reacting sites connected by a flexible tetraether chain. DPEE is capable of connecting a cross-link within a protein to another cross-link, either within the same protein molecule or between molecules. DPEE was readily prepared by esterification of a tetraether-linked bisphthalate (prepared by coupling of 1,2-bis(2-iodoethoxy)ethane and 5-hydroxyisophthalic acid). DPEE reacts with deoxy hemoglobin to produce a mixture of modified proteins. Ion-exchange HPLC was used to separate the modified proteins in the mixture. The most abundant products were selected for structural analysis, which used data from reverse-phase chromatography and tryptic peptide mapping. To prevent dissociation of the modified proteins during analysis, the products were further reacted with the bifunctional reagent, bis(3,5-dibromosalicyl) fumarate, which produces fumaryl cross-links between α-subunits. From peptide analysis of the separated products, the major modified protein from DPEE was identified as a novel species with four links within the same α2β2 tetramer. In addition, a minor product that involves cross-links in two different proteins was observed. These results imply that the reagent reacts primarily in a folded state within the protein.Key words: acylation: cross-linking, multifunctional, hemoglobin, reaction pattern.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Jamie Morris ◽  
Martin K Jones ◽  
Gang Ren ◽  
Jere Segrest ◽  
W Sean Davidson

Apolipoprotein (apo)A-I has been proposed to adopt a number of different, but related, structures when in contact with lipid. The technique of chemical cross-linking has recently been used to determine the spatial relationships between two molecules of apoA-I in reconstituted high density lipoprotein (rHDL) particles. However, this technique is limited in that it cannot unequivocally distinguish between intramolecular and intermolecular contacts. To address this issue, we have produced two forms of recombinant apoA-I that contain the naturally occurring isotope of nitrogen (N14) or a stable isotope (N15). These forms were mixed 1:1 and then used to produce reconstituted HDL particles with synthetic lipids. The resulting mass shifts (readily detectable in the mass spectrometer) were exploited to unambiguously distinguish between intramolecular (N14 to N14 or N15 to N15) and intermolecular (N14 to N15) cross-linked peptides. An additional benefit of this approach was the ability to identify cross-links with high certainty without the need for peptide fragmentation, allowing for dramatic increases in method sensitivity. We studied highly homogeneous rHDL particles made with the fully saturated phospholipid palmitoyl steroyl phosphatidylcholine (PSPC) to minimize apoA-I conformational dynamics. These particles were 98Å in diameter, contained two molecules of apoA-I, approximately 155 molecules of PC, and were discoidal in shape by cryo EM. We identified 30 cross-links (17 intramolecular, 13 intermolecular) that were overall consistent with the double belt model in which both apoA-I molecules wrap around a bilayer of lipids in an antiparallel orientation. Unambiguous intramolecular linkages between the N- and C-terminal regions of apoA-I were inconsistent with the ‘double super helix’ variant of the belt model. We identified several low abundance cross-links that suggest that the N-terminus may be conformationally dynamic and may spend some time folded back across the molecule as proposed for the ‘belt and buckle’ belt model.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Wing P. Chan ◽  
Fu-Chen Kung ◽  
Yu-Lin Kuo ◽  
Ming-Chen Yang ◽  
Wen-Fu Thomas Lai

A technique for synthesizing biocompatible hydrogels by cross-linking calcium-form poly(γ-glutamic acid), alginate sodium, and Pluronic F-127 was created, in which alginate can be cross-linked by Ca2+from Ca–γ-PGA directly andγ-PGA molecules introduced into the alginate matrix to provide pH sensitivity and hemostasis. Mechanical properties, swelling behavior, and blood compatibility were investigated for each hydrogel compared with alginate and forγ-PGA hydrogel with the sodium form only. Adding F-127 improves mechanical properties efficiently and influences the temperature-sensitive swelling of the hydrogels but also has a minor effect on pH-sensitive swelling and promotes anticoagulation. MG-63 cells were used to test biocompatibility. Gelation occurred gradually through change in the elastic modulus as the release of calcium ions increased over time and caused ionic cross-linking, which promotes the elasticity of gel. In addition, the growth of MG-63 cells in the gel reflected nontoxicity. These results showed that this biocompatible scaffold has potential for application in bone materials.


Sign in / Sign up

Export Citation Format

Share Document