Vascular calcification in chronic kidney disease: the role of vitamin K

2007 ◽  
Vol 3 (10) ◽  
pp. 522-523 ◽  
Author(s):  
Rachel M Holden ◽  
Sarah L Booth
2020 ◽  
Vol 7 ◽  
Author(s):  
Stefanos Roumeliotis ◽  
Evangelia Dounousi ◽  
Marios Salmas ◽  
Theodoros Eleftheriadis ◽  
Vassilios Liakopoulos

2019 ◽  
Vol 20 (4) ◽  
pp. 421-430
Author(s):  
Zar Chi Thent ◽  
Gabriele R.A. Froemming ◽  
Suhaila Abd Muid

Increasing interest in vascular pseudo-ossification has alarmed the modern atherosclerotic society. High phosphate is one of the key factors in vascular pseudo ossification, also known as vascular calcification. The active process of deposition of the phosphate crystals in vascular tissues results in arterial stiffness. High phosphate condition is mainly observed in chronic kidney disease patients. However, prolonged exposure with high phosphate enriched foods such as canned drinks, dietary foods, etc. can be considered as modifiable risk factors for vascular complication in a population regardless of chronic kidney disease. High intake of vitamin K regulates the vascular calcification by exerting its anti-calcification effect. The changes in serum phosphate and vitamin K levels in a normal individual with high phosphate intake are not well investigated. This review summarised the underlying mechanisms of high phosphate induced vascular pseudo ossification such as vascular transdifferentiation, vascular apoptosis and phosphate uptake by sodium-dependent co-transporters. Pubmed, Science Direct, Scopus, ISI Web of Knowledge and Google Scholar were searched using the terms ‘vitamin K’, ‘vascular calcification, ‘phosphate’, ‘transdifferentiation’ and ‘vascular pseudoossification’. Vitamin K certainly activates the matrix GIA protein and inhibits vascular transition and apoptosis in vascular pseudo-ossification. The present view highlighted the possible therapeutic linkage between vitamin K and the disease. Understanding the role of vitamin K will be considered as potent prophylaxis agent against the vascular disease in near future.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Beata Sieklucka ◽  
Tomasz Domaniewski ◽  
Marta Zieminska ◽  
Malgorzata Galazyn-Sidorczuk ◽  
Anna Pawlak ◽  
...  

Abstract Background and Aims Chronic kidney disease (CKD) is a major public health problem worldwide and refers to a wide range of disorders in bone and mineral metabolism, abnormalities of biochemical parameters and pathological calcification of the blood vessels. Vascular calcification (VC) is a common complication in CKD patients, contributes to cardiovascular disease (CVD), and associates with increased mortality and morbidity. The precise mechanism of VC in CKD is not yet fully understood. Recently discovered molecules such as osteoprotegerin (OPG), its ligand receptor activator of nuclear factor NF-κB ligand (RANKL) and RANK are not only well-known to play a crucial role in bone homeostasis, but they has also been implicated in the process of development of vascular complications However the exact role of OPG/RANKL/RANK axis in the process of VC has not been yet fully assessed. Thus, the aim of this work is to evaluate the role of OPG/RANKL/RANK axis in the process of calcification in CKD. Method Seventy two male Wistar rats weighing 260-290 g (8-weeks old) were initially divided into 6 groups containing 12 animals in each group. Rats were divided into six groups: control rats (K4, K6, K8) and CKD rats (B4, B6, B8). Control group rats received standard diet, whereas CKD rats were fed a low adenine – diet containing 0.3 % adenine, 1.0 % Ca, 1.2 % Pi through 4 (K4, B4), 6 (K6, B6) and 8 (K8, B8) weeks. Subsequently, CKD and control rats were sacrificed at weeks 4 (n=24), 6 (n=24) and 8 (n=24). One day before being killed, the rats were placed in metabolic cages for 24-hour urine collection. Thereafter, the rats were anesthetized and samples of blood, as well as aortas were collected. Next, the OPG, RANKL, parathyroid hormone (PTH), 25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxy vitamin D3 1,25(OH)2D3 concentrations were determined using appropriate ELISA kits. Then the sRANKL/OPG ratio was calculated. The OPG, RANK and RANKL gene expression was assessed using real-time PCR (RT-PCR). The VC was quantified by measurement of the arterial calcium (Ca) and phosphate (Pi) content using flame atomic absorption. Serum levels of urea nitrogen, creatinine, uric acid, Ca, Pi and urinary levels of creatinine, Ca and Pi were measured. Results There was a progressive increase in serum urea nitrogen, creatinine, uric acid and PTH of CKD rats in comparison to control values. We also observed significantly decreased levels of 25(OH)D, 1,25(OH)2D and serum Ca. Total Ca content in the aorta was significantly increased in CKD rats in comparison with control group, whereas total Pi content in the aorta was significantly increased only in B8 group in comparison to appropriate controls. There were no differences in serum OPG and sRANKL levels between CKD and control rats. In contrast, we observed decreased OPG, RANKL and RANK gene expression in a B4 group in comparison to appropriate controls, whereas in a B6 group we noticed increased OPG, RANKL and decreased RANK gene expression. B8 group revealed increased RANKL and RANK gene expression, but there were no differences in OPG gene expression between CKD rats and control group. Furthermore, we observed positive correlations between serum sRANKL and OPG and RANK gene expression. Ca and P content in the aorta inversely corelated with RANKL gene expression, whereas positively with OPG gene expression. Serum 25(OH)D concentrations correlated inversely with Ca in aorta. PTH was positively correlated with serum RANKL and OPG and gene expression these cytokines. Conclusion Our results suggest that OPG/RANK/RANKL axis may be involved in the process of vascular calcification in chronic kidney disease. However, its role and evaluation of precise mechanism in this field requires further evaluation.


Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 152 ◽  
Author(s):  
Yi-Chou Hou ◽  
Chien-Lin Lu ◽  
Cai-Mei Zheng ◽  
Ruei-Ming Chen ◽  
Yuh-Feng Lin ◽  
...  

Vascular calcification is a critical complication in patients with chronic kidney disease (CKD) because it is predictive of cardiovascular events and mortality. In addition to the traditional mechanisms associated with endothelial dysfunction and the osteoblastic transformation of vascular smooth muscle cells (VSMCs), the regulation of calcification inhibitors, such as calciprotein particles (CPPs) and matrix vesicles plays a vital role in uremic vascular calcification in CKD patients because of the high prevalence of vitamin K deficiency. Vitamin K governs the gamma-carboxylation of matrix Gla protein (MGP) for inhibiting vascular calcification, and the vitamin D binding protein receptor is related to vitamin K gene expression. For patients with chronic kidney disease, adequate use of vitamin D supplements may play a role in vascular calcification through modulation of the calciprotein particles and matrix vesicles (MVs).


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Loïc Louvet ◽  
Laurent Metzinger ◽  
Janine Büchel ◽  
Sonja Steppan ◽  
Ziad A. Massy

Vascular calcification (VC) is prevalent in patients suffering from chronic kidney disease (CKD). High phosphate levels promote VC by inducing abnormalities in mineral and bone metabolism. Previously, we demonstrated that magnesium (Mg2+) prevents inorganic phosphate- (Pi-) induced VC in human aortic vascular smooth muscle cells (HAVSMC). As microRNAs (miR) modulate gene expression, we investigated the role of miR-29b, -30b, -125b, -133a, -143, and -204 in the protective effect of Mg2+on VC. HAVSMC were cultured in the presence of 3 mM Pi with or without 2 mM Mg2+chloride. Total RNA was extracted after 4 h, 24 h, day 3, day 7, and day 10. miR-30b, -133a, and -143 were downregulated during the time course of Pi-induced VC, whereas the addition of Mg2+restored (miR-30b) or improved (miR-133a, miR-143) their expression. The expression of specific targets Smad1 and Osterix was significantly increased in the presence of Pi and restored by coincubation with Mg2+. As miR-30b, miR-133a, and miR-143 are negatively regulated by Pi and restored by Mg2+with a congruent modulation of their known targets Runx2, Smad1, and Osterix, our results provide a potential mechanistic explanation of the observed upregulation of these master switches of osteogenesis during the course of VC.


2019 ◽  
Vol 34 (Supplement_1) ◽  
Author(s):  
Ana Paula Silva ◽  
Mendes Filipa ◽  
Carias Eduarda ◽  
Fragoso Andre ◽  
Almeida Edgar ◽  
...  

2021 ◽  
Vol 25 (6) ◽  
pp. 63-70
Author(s):  
F. U. Dzgoeva ◽  
O. V. Remizov ◽  
V. Kh. Botsieva ◽  
N. G. Malakhova ◽  
Z. R. Ikoeva ◽  
...  

BACKGROUND. Cardiovascular complications caused by vascular calcification in chronic kidney disease (CKD) are closely related to disorders of bone and mineral metabolism, the mechanisms of which require further study.THE AIM: to clarify the role of the regulatory proteins of bone metabolism of sclerostin and osteoprotegerin in the processes of vascular calcification and the development of cardiovascular complications in CKD.PATIENTS AND METHODS. 110 patients with stage 3-5D CKD (67 men) were examined. Median age is 47.0 (23.0-68.0) years. Osteoprotegerin (OPG), sclerostin, intact parathyroid hormone (IPTG), troponin I in blood serum were determined using commercial kits "Enzyme-linked Immunosorbent Assay Kit for Sclerostin" ("Cloud-Clone Corp.", USA) and commercial kits "ELISA kit" ("Biomedica" (Austria) by enzyme immunoassay (ELISA). Echocardiography with Dopplerography was performed on the device "ALOKA 4000" ("Toshiba", Japan). The left ventricular myocardial mass index (LVMI) and peak systolic blood flow velocity in the aortic arch (Vps, peak systolic velocity) were determined to quantify hemodynamic changes indirectly indicating the state of the aortic vascular wall.RESULTS. Analysis of the ratios of the calculated glomerular filtration rate (EGFR), IMLJ, Vps, OPG, and sclerostin showed that a decrease in excretory kidney function is accompanied by an increase in the concentrations of OPG and sclerostin in the blood serum. At the same time, there is an increase in IMLJ and Vps. During the correlation analysis, it was shown that the level of OPG was positively correlated with the level of sclerostin and negatively with the level of iPTG.CONCLUSION. In our study, we obtained data confirming the interactive interaction between the vascular and bone systems. Morphogenetic proteins-inhibitors of bone metabolism (sclerostin and OPG) play a significant role in the defeat of the cardiovascular system in patients with CKD, as they promotes the development of vascular calcification.


Sign in / Sign up

Export Citation Format

Share Document