rank gene
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 1)

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Venkata S. K. Manem

Abstract Background Radiation therapy is among the most effective and commonly used therapeutic modalities of cancer treatments in current clinical practice. The fundamental paradigm that has guided radiotherapeutic regimens are ‘one-size-fits-all’, which are not in line with the dogma of precision medicine. While there were efforts to build radioresponse signatures using OMICS data, their ability to accurately predict in patients is still limited. Methods We proposed to integrate two large-scale radiogenomics datasets consisting of 511 with 23 tissues and 60 cancer cell lines with 9 tissues to build and validate radiation response biomarkers. We used intrinsic radiation sensitivity, i.e., surviving fraction of cells (SF2) as the radiation response indicator. Gene set enrichment analysis was used to examine the biological determinants driving SF2. Using SF2 as a continuous variable, we used five different approaches, univariate, rank gene ensemble, rank gene multivariate, mRMR and elasticNet to build genomic predictors of radiation response through a cross-validation framework. Results Through the pathway analysis, we found 159 pathways to be statistically significant, out of which 54 and 105 were positively and negatively enriched with SF2. More importantly, we found cell cycle and repair pathways to be enriched with SF2, which are inline with the fundamental aspects of radiation biology. With regards to the radiation response gene signature, we found that all multivariate models outperformed the univariate model with a ranking based approach performing well compared to other models, indicating complex biological processes underpinning radiation response. Conclusion To summarize, we found biological processes underpinning SF2 and systematically compared different machine learning approaches to develop and validate predictors of radiation response. With more patient data available in the future, the clinical value of these biomarkers can be assessed that would allow for personalization of radiotherapy.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Wei Wang ◽  
Shi-Chong Qiao ◽  
Xiang-Bing Wu ◽  
Bao Sun ◽  
Jin-Gang Yang ◽  
...  

AbstractWith an increasing aging society, China is the world’s fastest growing markets for oral implants. Compared with traditional oral implants, immediate implants cause marginal bone resorption and increase the failure rate of osseointegration, but the mechanism is still unknown. Therefore, it is important to further study mechanisms of tension stimulus on osteoblasts and osteoclasts at the early stage of osseointegration to promote rapid osseointegration around oral implants. The results showed that exosomes containing circ_0008542 from MC3T3-E1 cells with prolonged tensile stimulation promoted osteoclast differentiation and bone resorption. Circ_0008542 upregulated Tnfrsf11a (RANK) gene expression by acting as a miR-185-5p sponge. Meanwhile, the circ_0008542 1916-1992 bp segment exhibited increased m6A methylation levels. Inhibiting the RNA methyltransferase METTL3 or overexpressing the RNA demethylase ALKBH5 reversed osteoclast differentiation and bone resorption induced by circ_0008542. Injection of circ_0008542 + ALKBH5 into the tail vein of mice reversed the same effects in vivo. Site-directed mutagenesis study demonstrated that 1956 bp on circ_0008542 is the m6A functional site with the abovementioned biological functions. In conclusion, the RNA methylase METTL3 acts on the m6A functional site of 1956 bp in circ_0008542, promoting competitive binding of miRNA-185-5p by circ_0008542, and leading to an increase in the target gene RANK and the initiation of osteoclast bone absorption. In contrast, the RNA demethylase ALKBH5 inhibits the binding of circ_0008542 with miRNA-185-5p to correct the bone resorption process. The potential value of this study provides methods to enhance the resistance of immediate implants through use of exosomes releasing ALKBH5.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Tiantian Wang ◽  
Fei Wang ◽  
Tingting Liu ◽  
Menghu Sun ◽  
Feimeng An ◽  
...  

Abstract Background and purpose Alcohol-induced osteonecrosis of the femoral head (ONFH) is a complex and heterogeneous disease. Genetic factors and epigenetic modifications are one of the pathogenesis of the disease. However, the influence of epigenetic factors on the disease has not been systematically studied. Our research aims to determine the methylation changes of alcohol-induced ONFH. Methods An analytical cross-sectional study of a Chinese male population (50 alcohol-induced ONFH patients and 50 controls). The EpiTYPER of the Sequenom MassARRAY platform was used to detect the DNA methylation status of 132 cytosine-phosphate-guanine (CpG) sites in the OPG/RANKL/RANK gene promoter region. Results In the whole study group, the chi-square test was used to analyze the methylation rate between the two groups, and six CpG sites were found to be different, among which OPG1_CpG_2, OPG3_CpG_4, RANK1_CpG_6, RANK3_CpG_10, RANKL2_CpG_21, and RANKL2_CpG_46 in the case group were higher than those in the control group, while OPG4_CpG_2 was lower than that in the control group. The results showed that in patients with alcohol-induced ONFH, 146 CpG sites were examined for differences in methylation levels compared with healthy controls, 32 of which were not detected, and 23 of the remaining 114 sites showed differences in methylation levels compared with alcohol-induced ONFH patients. Receiver operator characteristic (ROC) curve analysis demonstrated the methylation levels of OPG/RANKL/RANK could efficiently predict the existence of alcohol-induced ONFH. Conclusion Our study of Chinese men suggests that several CpG sites in the OPG/RANKL/RANK gene in peripheral blood leukocytes of patients with alcohol-induced ONFH are in an abnormal methylation state (hypermethylation tended to be more frequent).


2021 ◽  
Author(s):  
Tiantian Wang ◽  
Fei Wang ◽  
Tingting Liu ◽  
Menghu Sun ◽  
Feimeng An ◽  
...  

Abstract Background and purpose: Alcohol-induced osteonecrosis of the femoral head (ONFH) is a complex and heterogeneous disease. Genetic factors and epigenetic modifications are one of the pathogenesis of the disease. However, the influence of epigenetic factors on the disease has not been systematically studied. Our research aims to determine the methylation changes of alcohol-induced ONFH.Methods:An analytical cross-sectional study of a Chinese male population (50 lung cancer patients and 50 controls). The EpiTYPER of the Sequenom MassARRAY platform was used to detect the DNA methylation status of 132 Cytosine-phosphate-Guanine (CpG) sites in the OPG/RANKL/RANK gene promoter region.Results: In the whole study group,Chi-square test was used to analyze the methylation rate between the two groups, and six CpG sites were found to be different, among which OPG1_CpG_2, OPG3_CpG_4, RANK1_CpG_6, RANK3_CpG_10, RANKL2_CpG_21, and RANKL2_CpG_46 in the case group were higher than those in the control group, while OPG4_CpG_2 was lower than that in the control group. Our results showed that 146 CpG sites were measured, of which 32 were undetectable, and of the remaining 114 methylation sites, methylation levels were different in 23 CpG sites in patients with alcohol-induced ONFH compared to healthy controls. Receiver operator characteristic (ROC) curve analysis demonstrated the methylation levels of OPG/RANKL/RANK could efficiently predict the existence of alcohol-induced ONFH.Conclusion: Our study of Chinese men suggests that several CpG sites in the OPG/RANKL/RANK gene in peripheral blood leukocytes of patients with alcohol-induced ONFH are in abnormal methylation state(hypermethylation tended to be more frequent).


Medicine ◽  
2020 ◽  
Vol 99 (40) ◽  
pp. e22436
Author(s):  
Clara Pertusa ◽  
Juan J. Tarín ◽  
Antonio Cano ◽  
Miguel Angel García-Pérez

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Beata Sieklucka ◽  
Tomasz Domaniewski ◽  
Marta Zieminska ◽  
Malgorzata Galazyn-Sidorczuk ◽  
Anna Pawlak ◽  
...  

Abstract Background and Aims Chronic kidney disease (CKD) is a major public health problem worldwide and refers to a wide range of disorders in bone and mineral metabolism, abnormalities of biochemical parameters and pathological calcification of the blood vessels. Vascular calcification (VC) is a common complication in CKD patients, contributes to cardiovascular disease (CVD), and associates with increased mortality and morbidity. The precise mechanism of VC in CKD is not yet fully understood. Recently discovered molecules such as osteoprotegerin (OPG), its ligand receptor activator of nuclear factor NF-κB ligand (RANKL) and RANK are not only well-known to play a crucial role in bone homeostasis, but they has also been implicated in the process of development of vascular complications However the exact role of OPG/RANKL/RANK axis in the process of VC has not been yet fully assessed. Thus, the aim of this work is to evaluate the role of OPG/RANKL/RANK axis in the process of calcification in CKD. Method Seventy two male Wistar rats weighing 260-290 g (8-weeks old) were initially divided into 6 groups containing 12 animals in each group. Rats were divided into six groups: control rats (K4, K6, K8) and CKD rats (B4, B6, B8). Control group rats received standard diet, whereas CKD rats were fed a low adenine – diet containing 0.3 % adenine, 1.0 % Ca, 1.2 % Pi through 4 (K4, B4), 6 (K6, B6) and 8 (K8, B8) weeks. Subsequently, CKD and control rats were sacrificed at weeks 4 (n=24), 6 (n=24) and 8 (n=24). One day before being killed, the rats were placed in metabolic cages for 24-hour urine collection. Thereafter, the rats were anesthetized and samples of blood, as well as aortas were collected. Next, the OPG, RANKL, parathyroid hormone (PTH), 25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxy vitamin D3 1,25(OH)2D3 concentrations were determined using appropriate ELISA kits. Then the sRANKL/OPG ratio was calculated. The OPG, RANK and RANKL gene expression was assessed using real-time PCR (RT-PCR). The VC was quantified by measurement of the arterial calcium (Ca) and phosphate (Pi) content using flame atomic absorption. Serum levels of urea nitrogen, creatinine, uric acid, Ca, Pi and urinary levels of creatinine, Ca and Pi were measured. Results There was a progressive increase in serum urea nitrogen, creatinine, uric acid and PTH of CKD rats in comparison to control values. We also observed significantly decreased levels of 25(OH)D, 1,25(OH)2D and serum Ca. Total Ca content in the aorta was significantly increased in CKD rats in comparison with control group, whereas total Pi content in the aorta was significantly increased only in B8 group in comparison to appropriate controls. There were no differences in serum OPG and sRANKL levels between CKD and control rats. In contrast, we observed decreased OPG, RANKL and RANK gene expression in a B4 group in comparison to appropriate controls, whereas in a B6 group we noticed increased OPG, RANKL and decreased RANK gene expression. B8 group revealed increased RANKL and RANK gene expression, but there were no differences in OPG gene expression between CKD rats and control group. Furthermore, we observed positive correlations between serum sRANKL and OPG and RANK gene expression. Ca and P content in the aorta inversely corelated with RANKL gene expression, whereas positively with OPG gene expression. Serum 25(OH)D concentrations correlated inversely with Ca in aorta. PTH was positively correlated with serum RANKL and OPG and gene expression these cytokines. Conclusion Our results suggest that OPG/RANK/RANKL axis may be involved in the process of vascular calcification in chronic kidney disease. However, its role and evaluation of precise mechanism in this field requires further evaluation.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Haoyu Yang ◽  
Weixi Liu ◽  
Xindie Zhou ◽  
Huan Rui ◽  
Hui Zhang ◽  
...  

Abstract The receptor activator of nuclear factor-κB (RANK) and the osteoprotegerin (OPG) cascade system have been reported to be essential in osteoclastogenesis. In recent years, several studies have investigated the association between polymorphisms of RANK, its ligand RANKL and OPG genes and the risk of rheumatoid arthritis (RA) in different populations. However, the results arising from these studies were conflicting. To determine the association between RANK, RANKL and OPG gene polymorphisms and the risk of RA. We conducted a hospital-based case-controlled study in Changzhou with 574 RA cases and 804 controls. The genotyping of RANK gene rs1805034 polymorphism was conducted by single base extension combined with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). We also undertook a meta-analysis of the literature referring to polymorphisms of RANK, RANKL and OPG genes and RA risk. This case-controlled study found that the polymorphism in the RANK gene rs1805034 was not related to RA risk. Stratification analyses by sex and age suggested that RANK gene rs1805034 polymorphism was not associated with the risk of RA among groups of male, female, age ≤ 55 and age > 55. Our meta-analysis found that the rs2277438 polymorphism in RANKL gene increased the risk of RA, whereas RANK gene rs1805034, OPG gene rs3102735, OPG gene rs2073618, OPG gene rs3134069 polymorphisms were not related to RA susceptibility. In conclusion, this case-controlled study and meta-analysis indicated that the RANKL gene rs2277438 polymorphism increased the RA risk, and that RANK gene rs1805034, OPG gene rs3102735, OPG gene rs2073618, OPG gene rs3134069 polymorphisms were not related to RA risk.


2018 ◽  
Author(s):  
Christophe Liseron-Monfils ◽  
Andrew Olson ◽  
Doreen Ware

AbstractThe challenge of increasing crop yield while decreasing plants’ susceptibility to various stresses can be lessened by understanding plant regulatory processes in a tissue-specific manner. Molecular network analysis techniques were developed to aid in understanding gene inter-regulation. However, few tools for molecular network mining are designed to extract the most relevant genes to act upon. In order to find and to rank these putative regulator genes, we generated NECorr, a computational pipeline based on multiple-criteria decision-making algorithms. With the objective of ranking genes and their interactions in a selected condition or tissue, NECorr uses the molecular network topology as well as global gene expression analysis to find hub genes and their condition-specific regulators. NECorr was applied to Arabidopsis thaliana flower tissue and identifies known regulators in the developmental processes of this tissue as well as new putative regulators. NECorr will accelerate translational research by ranking candidate genes within a molecular network of interest.


Sign in / Sign up

Export Citation Format

Share Document