scholarly journals Emerging Role of Vitamins D and K in Modulating Uremic Vascular Calcification: The Aspect of Passive Calcification

Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 152 ◽  
Author(s):  
Yi-Chou Hou ◽  
Chien-Lin Lu ◽  
Cai-Mei Zheng ◽  
Ruei-Ming Chen ◽  
Yuh-Feng Lin ◽  
...  

Vascular calcification is a critical complication in patients with chronic kidney disease (CKD) because it is predictive of cardiovascular events and mortality. In addition to the traditional mechanisms associated with endothelial dysfunction and the osteoblastic transformation of vascular smooth muscle cells (VSMCs), the regulation of calcification inhibitors, such as calciprotein particles (CPPs) and matrix vesicles plays a vital role in uremic vascular calcification in CKD patients because of the high prevalence of vitamin K deficiency. Vitamin K governs the gamma-carboxylation of matrix Gla protein (MGP) for inhibiting vascular calcification, and the vitamin D binding protein receptor is related to vitamin K gene expression. For patients with chronic kidney disease, adequate use of vitamin D supplements may play a role in vascular calcification through modulation of the calciprotein particles and matrix vesicles (MVs).

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247623
Author(s):  
Lu Dai ◽  
Longkai Li ◽  
Helen Erlandsson ◽  
Armand M. G. Jaminon ◽  
Abdul Rashid Qureshi ◽  
...  

Patients with chronic kidney disease (CKD) suffer from vitamin K deficiency and are at high risk of vascular calcification (VC) and premature death. We investigated the association of functional vitamin K deficiency with all-cause mortality and whether this association is modified by the presence of VC in CKD stage 5 (CKD G5). Plasma dephosphorylated-uncarboxylated matrix Gla-protein (dp-ucMGP), a circulating marker of functional vitamin K deficiency, and other laboratory and clinical data were determined in 493 CKD G5 patients. VC was assessed in subgroups by Agatston scoring of coronary artery calcium (CAC) and aortic valve calcium (AVC). Backward stepwise regression did not identify dp-ucMGP as an independent determinant of VC. During a median follow-up of 42 months, 93 patients died. Each one standard deviation increment in dp-ucMGP was associated with increased risk of all-cause mortality (sub-hazard ratio (sHR) 1.17; 95% confidence interval, 1.01–1.37) adjusted for age, sex, cardiovascular disease, diabetes, body mass index, inflammation, and dialysis treatment. The association remained significant when further adjusted for CAC and AVC in sub-analyses (sHR 1.22, 1.01–1.48 and 1.27, 1.01–1.60, respectively). In conclusion, functional vitamin K deficiency associates with increased mortality risk that is independent of the presence of VC in patients with CKD G5.


2020 ◽  
Vol 7 ◽  
Author(s):  
Stefanos Roumeliotis ◽  
Evangelia Dounousi ◽  
Marios Salmas ◽  
Theodoros Eleftheriadis ◽  
Vassilios Liakopoulos

2019 ◽  
Vol 20 (4) ◽  
pp. 421-430
Author(s):  
Zar Chi Thent ◽  
Gabriele R.A. Froemming ◽  
Suhaila Abd Muid

Increasing interest in vascular pseudo-ossification has alarmed the modern atherosclerotic society. High phosphate is one of the key factors in vascular pseudo ossification, also known as vascular calcification. The active process of deposition of the phosphate crystals in vascular tissues results in arterial stiffness. High phosphate condition is mainly observed in chronic kidney disease patients. However, prolonged exposure with high phosphate enriched foods such as canned drinks, dietary foods, etc. can be considered as modifiable risk factors for vascular complication in a population regardless of chronic kidney disease. High intake of vitamin K regulates the vascular calcification by exerting its anti-calcification effect. The changes in serum phosphate and vitamin K levels in a normal individual with high phosphate intake are not well investigated. This review summarised the underlying mechanisms of high phosphate induced vascular pseudo ossification such as vascular transdifferentiation, vascular apoptosis and phosphate uptake by sodium-dependent co-transporters. Pubmed, Science Direct, Scopus, ISI Web of Knowledge and Google Scholar were searched using the terms ‘vitamin K’, ‘vascular calcification, ‘phosphate’, ‘transdifferentiation’ and ‘vascular pseudoossification’. Vitamin K certainly activates the matrix GIA protein and inhibits vascular transition and apoptosis in vascular pseudo-ossification. The present view highlighted the possible therapeutic linkage between vitamin K and the disease. Understanding the role of vitamin K will be considered as potent prophylaxis agent against the vascular disease in near future.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 809
Author(s):  
Marta Ziemińska ◽  
Beata Sieklucka ◽  
Krystyna Pawlak

Vitamin K (VK) and vitamin D (VD) deficiency/insufficiency is a common feature of chronic kidney disease (CKD), leading to impaired bone quality and a higher risk of fractures. CKD patients, with disturbances in VK and VD metabolism, do not have sufficient levels of these vitamins for maintaining normal bone formation and mineralization. So far, there has been no consensus on what serum VK and VD levels can be considered sufficient in this particular population. Moreover, there are no clear guidelines how supplementation of these vitamins should be carried out in the course of CKD. Based on the existing results of preclinical studies and clinical evidence, this review intends to discuss the effect of VK and VD on bone remodeling in CKD. Although the mechanisms of action and the effects of these vitamins on bone are distinct, we try to find evidence for synergy between them in relation to bone metabolism, to answer the question of whether combined supplementation of VK and VD will be more beneficial for bone health in the CKD population than administering each of these vitamins separately.


2019 ◽  
Vol 35 (5) ◽  
pp. 765-773 ◽  
Author(s):  
Anique D ter Braake ◽  
Coby Eelderink ◽  
Lara W Zeper ◽  
Andreas Pasch ◽  
Stephan J L Bakker ◽  
...  

Abstract Background Phosphate (Pi) toxicity is a strong determinant of vascular calcification development in chronic kidney disease (CKD). Magnesium (Mg2+) may improve cardiovascular risk via vascular calcification. The mechanism by which Mg2+ counteracts vascular calcification remains incompletely described. Here we investigated the effects of Mg2+ on Pi and secondary crystalline calciprotein particles (CPP2)-induced calcification and crystal maturation. Methods Vascular smooth muscle cells (VSMCs) were treated with high Pi or CPP2 and supplemented with Mg2+ to study cellular calcification. The effect of Mg2+ on CPP maturation, morphology and composition was studied by medium absorbance, electron microscopy and energy dispersive spectroscopy. To translate our findings to CKD patients, the effects of Mg2+ on calcification propensity (T50) were measured in sera from CKD patients and healthy controls. Results Mg2+ supplementation prevented Pi-induced calcification in VSMCs. Mg2+ dose-dependently delayed the maturation of primary CPP1 to CPP2 in vitro. Mg2+ did not prevent calcification and associated gene and protein expression when added to already formed CPP2. Confirmatory experiments in human serum demonstrated that the addition of 0.2 mmol/L Mg2+ increased T50 from healthy controls by 51 ± 15 min (P < 0.05) and CKD patients by 44 ± 13 min (P < 0.05). Each further 0.2 mmol/L addition of Mg2+ led to further increases in both groups. Conclusions Our results demonstrate that crystalline CPP2 mediates Pi-induced calcification in VSMCs. In vitro, Mg2+ delays crystalline CPP2 formation and thereby prevents Pi-induced calcification.


2007 ◽  
Vol 27 (2_suppl) ◽  
pp. 215-222 ◽  
Author(s):  
Tomasz Stompór

Abnormalities of calcium–phosphate balance, with subsequent bone metabolism disorders, are among the key and earliest features of chronic kidney disease (CKD). Recently, another consequence of these abnormalities was brought to light—namely, vascular calcification. Most studies performed in patients on dialysis suggest that their vascular calcification is more advanced than that seen in the general population. Furthermore, the progression of vessel wall mineralization is much more dynamic in patients with CKD. Apart from the commonly assessed factors that promote vascular calcification, such as age, duration of dialysis, or poor control of calcium–phosphate status, several other factors have recently been identified. In the spectrum of substances involved in the regulation of the process of soft-tissue calcification, the most extensively studied in the nephrology literature are bone morphogenetic protein 7, osteoprotegerin, matrix Gla protein, fetuin-A, and the phosphatonins. Better understanding of the mechanisms underlying excess vascular mineralization have led to the development of promising new therapies.


2021 ◽  
Vol 25 (10) ◽  
pp. 403-409
Author(s):  
Markus Ketteler ◽  
Kai Hahn

ZUSAMMENFASSUNGDer Begriff CKD-MBD (Chronic Kidney Disease – Mineral Bone Disorder) ist seit einigen Jahren für Störungen des Kalzium-Phosphat-Stoffwechsels und der damit verbundenen Risiken für das Mineral-Knochen- und Herz-Kreislauf-System bei chronischen Nierenerkrankungen bekannt. Die Bezeichnung entstand nach einem Paradigmenwechsel in der Pathophysiologie des sekundären Hyperparathyreoidismus und da neue Akteure wie FGF23 und Klotho gefunden wurden, die eine wichtige Rolle bei der Entstehung der Störungen spielen. Das wachsende Verständnis der Zusammenhänge zwischen den neuen Akteuren und Kalzium, Phosphat, Vitamin D und Vitamin K2 und der Verkalkung von Gefäßen und Weichteilen beeinflusste unweigerlich unsere Therapien. Dieser erste Teil des Beitrags verschafft einen Überblick über die neuesten Erkenntnisse zum Phosphat-Sensing, die Rolle von FGF23 und Klotho und die Besonderheiten des Vitamin-D- und Vitamin-K-Stoffwechsels bei Gesundheit und chronischer Nierenerkrankung.


Sign in / Sign up

Export Citation Format

Share Document