scholarly journals Tailoring photosensitive ROS for advanced photodynamic therapy

Author(s):  
Duc Loc Sai ◽  
Jieun Lee ◽  
Duc Long Nguyen ◽  
Young-Pil Kim

AbstractPhotodynamic therapy (PDT) has been considered a noninvasive and cost-effective modality for tumor treatment. However, the complexity of tumor microenvironments poses challenges to the implementation of traditional PDT. Here, we review recent advances in PDT to resolve the current problems. Major breakthroughs in PDTs are enabling significant progress in molecular medicine and are interconnected with innovative strategies based on smart bio/nanomaterials or therapeutic insights. We focus on newly developed PDT strategies designed by tailoring photosensitive reactive oxygen species generation, which include the use of proteinaceous photosensitizers, self-illumination, or oxygen-independent approaches. While these updated PDT platforms are expected to enable major advances in cancer treatment, addressing future challenges related to biosafety and target specificity is discussed throughout as a necessary goal to expand the usefulness of PDT.

2019 ◽  
Vol 20 (5) ◽  
pp. 1148 ◽  
Author(s):  
Chun-Chen Yang ◽  
Wei-Yun Wang ◽  
Feng-Huei Lin ◽  
Chun-Han Hou

Conventional photodynamic therapy (PDT) is limited by its penetration depth due to the photosensitizer and light source. In this study, we developed X-ray induced photodynamic therapy that applied X-ray as the light source to activate Ce-doped CaCO3 (CaCO3:Ce) to generate an intracellular reactive oxygen species (ROS) for killing cancer cells. The A549 cell line was used as the in vitro and in vivo model to evaluate the efficacy of X-ray-induced CaCO3:Ce. The cell viability significantly decreased and cell cytotoxicity obviously increased with CaCO3:Ce exposure under X-ray irradiation, which is less harmful than radiotherapy in tumor treatment. CaCO3:Ce produced significant ROS under X-ray irradiation and promoted A549 cancer cell death. CaCO3:Ce can enhance the efficacy of X-ray induced PDT, and tumor growth was inhibited in vivo. The blood analysis and hematoxylin and eosin stain (H&E) stain fully supported the safety of the treatment. The mechanisms underlying ROS and CO2 generation by CaCO3:Ce activated by X-ray irradiation to induce cell toxicity, thereby inhibiting tumor growth, is discussed. These findings and advances are of great importance in providing a novel therapeutic approach as an alternative tumor treatment.


Biomaterials ◽  
2020 ◽  
Vol 255 ◽  
pp. 120210 ◽  
Author(s):  
Zujian Feng ◽  
Jinxuan Guo ◽  
Xiang Liu ◽  
Huijuan Song ◽  
Chuangnian Zhang ◽  
...  

2019 ◽  
Author(s):  
zhiyang liu ◽  
hang zou ◽  
zheng zhao ◽  
Pengfei Zhang ◽  
Guogang shan ◽  
...  

Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However, guidelines on their molecular design are rarely reported. In this work, a series of PSs are designed and synthesized based on a triphenylamine-azafluorenone core. Their structure-property-application relationships are systematically studied. Cationization is an effective strategy to enhance the PDT efficiency of PSs. From the molecularly dispersed state to the aggregate state, the fluorescence and the reactive oxygen species generation efficiency of PSs with aggregation-induced emission (AIE) increase due to the restriction of the intramolecular motions and enhancement of intersystem crossing. Cationized mitochondrion-targeting PSs show higher PDT efficiency than that of nonionized ones targeting lipid droplets. The ability of AIE PSs to kill cancer cells can be further enhanced by combination of PDT with radiotherapy. Such results should trigger research enthusiasm for designing and synthesizing new AIE PSs with better PDT efficiency and new properties.


2010 ◽  
Vol 8 (2) ◽  
pp. 279-291 ◽  
Author(s):  
Venny Santosa ◽  
Leenawaty Limantara

Photodynamic therapy (PDT) is a considerably new kind of photochemotherapeutic treatment in medical field. It combines the use of three components, which are a photosensitizer, light and oxygen. Photosensitizer is a compound activated by light. The application can be oral, topical or intravenous. It usually member of porphyrin group with ampiphilic characteristics. Photosensitizer can be of generation I, II or III, each generation step develops more specificity, selectivity and deeper tissue application. This review will discuss photosensitizer development consecutively, with its benefit and lackness. The light used is usually on red region, while the oxygen is involved in reactive oxygen species generation. Its mechanism action can go through either in type I or type II reaction. This kind of therapy is usually being used in oncology, especially in superficial and in-lining cancers, dermatology and ophthalmology field. This therapy can be safely given to patients with complication and has distinct advantages compare with other treatment such as chemotherapy and surgery. It also considerably has lesser side effects and risks. Broader application is being developed through various experiments and photosensitizer modification.   Keywords: light spectrum, photoactivation, photodynamic therapy, photosensitizer


Author(s):  
Xiaofu Weng ◽  
Zhouzhou Bao ◽  
Xunbin Wei

Photodynamic therapy (PDT) takes advantage of photosensitizers (PSs) to generate reactive oxygen species (ROS) for cell killing when excited by light. It has been widely used in clinic for therapy of multiple cancers. Currently, all the FDA-approved PSs, including porphyrin, are all small organic molecules, suffering from aggregation-caused quenching (ACQ) issues in biological environment and lacking tumor targeting capability. Nanoparticles (NPs) with size between 20[Formula: see text]nm and 200[Formula: see text]nm possess tumor targeting capability due to the enhanced permeability and retention (EPR) effect. It is urgent to develop a new strategy to form clinical-approved-PSs-based NPs with improved ROS generation capability. In this study, we report a strategy to overwhelm the ACQ of porphyrin by doping it with a type of aggregation-induced emission (AIE) luminogen to produce a binary NPs with high biocompatibility, and enhanced fluorescence and ROS generation capability. Such NPs can be readily synthesized by mixing a porphyrin derivative, Ce6 with a typical AIE luminogen, TPE-Br. Here, our experimental results have demonstrated the feasibility and effectiveness of this strategy, endowing it a great potential in clinical applications.


Author(s):  
Guo Li ◽  
Qi Wang ◽  
Jinxia Liu ◽  
Mingmin Wu ◽  
Haiwei Ji ◽  
...  

Photodynamic therapy (PDT) is an approved and promising treatment approach that utilizes photosensitizer (PS) to produce cytotoxic reactive oxygen species (ROS) through irradiation to achieve tumor noninvasive therapy. Whereas, the...


2019 ◽  
Vol 7 ◽  
pp. 2050313X1982961
Author(s):  
Christina M Huang ◽  
Lauren Lam ◽  
Robert Gniadecki

Primary cutaneous amyloidosis is characterized by polymerization of extracellular amyloid precursors in β-pleated sheet conformation into larger fibrillar aggregates. Observation in models of Alzheimer’s disease have noted that amyloid polymerization in the brain is blocked by reactive oxygen species. Singlet oxygen is formed in the skin during methyl aminolevulinate photodynamic therapy. Therefore, we speculate that type II photochemical reaction is responsible for the observed therapeutic activity of methyl aminolevulinate photodynamic therapy in our patient with primary cutaneous amyloidosis. Our case is the first report demonstrating the efficacy of daylight photodynamic therapy in primary cutaneous amyloidosis. Daylight photodynamic therapy may provide a convenient and cost-effective therapeutic option in primary cutaneous amyloidosis, and its efficacy should be further confirmed in prospective trials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3212
Author(s):  
Daria Kirsanova ◽  
Vladimir Polyakov ◽  
Vera Butova ◽  
Peter Zolotukhin ◽  
Anna Belanova ◽  
...  

It is known that the initiation of photodynamic therapy (PDT) in deep-seated tumors requires the use of X-rays to activate the reactive oxygen species generation in deep tissues. The aim of this paper is to synthesize X-ray nanophosphors and analyze their structural and luminescence characteristics to push the PDT process deep into the body. The article deals with BaGdF5:Eu3+, BaGdF5:Sm3+, and BaGdF5:Tb3+ nanophosphors synthesized using microwave synthesis. It is found that the nanoparticles are biocompatible and have sizes 5–17 nm. However, according to the analysis of X-ray excited optical luminescence, BaGdF5:Sm3+ nanophosphors will not be effective for treating deep-seated tumors. Thus, BaGdF5:Eu3+ and BaGdF5:Tb3+ nanoparticles meet the requirements for the subsequent production of nanocomposites based on them that can be used in X-ray photodynamic therapy.


Sign in / Sign up

Export Citation Format

Share Document