scholarly journals Reverted exhaustion phenotype of circulating lymphocytes as immune correlate of anti-PD1 first-line treatment in Hodgkin lymphoma

Leukemia ◽  
2021 ◽  
Author(s):  
Maria A. Garcia-Marquez ◽  
Martin Thelen ◽  
Sarah Reinke ◽  
Diandra Keller ◽  
Kerstin Wennhold ◽  
...  

AbstractWhile classical Hodgkin lymphoma (HL) is highly susceptible to anti-programmed death protein 1 (PD1) antibodies, the exact modes of action remain controversial. To elucidate the circulating lymphocyte phenotype and systemic effects during anti-PD1 1st-line HL treatment we applied multicolor flow cytometry, FluoroSpot and NanoString to sequential samples of 81 HL patients from the NIVAHL trial (NCT03004833) compared to healthy controls. HL patients showed a decreased CD4 T-cell fraction, a higher percentage of effector-memory T cells and higher expression of activation markers at baseline. Strikingly, and in contrast to solid cancers, expression for 10 out of 16 analyzed co-inhibitory molecules on T cells (e.g., PD1, LAG3, Tim3) was higher in HL. Overall, we observed a sustained decrease of the exhausted T-cell phenotype during anti-PD1 treatment. FluoroSpot of 42.3% of patients revealed T-cell responses against ≥1 of five analyzed tumor-associated antigens. Importantly, these responses were more frequently observed in samples from patients with early excellent response to anti-PD1 therapy. In summary, an initially exhausted lymphocyte phenotype rapidly reverted during anti-PD1 1st-line treatment. The frequently observed IFN-y responses against shared tumor-associated antigens indicate T-cell-mediated cytotoxicity and could represent an important resource for immune monitoring and cellular therapy of HL.

2018 ◽  
Vol 3 (29) ◽  
pp. eaat7061 ◽  
Author(s):  
Bei Wang ◽  
Wen Zhang ◽  
Vladimir Jankovic ◽  
Jacquelynn Golubov ◽  
Patrick Poon ◽  
...  

Most patients with cancer do not develop durable antitumor responses after programmed cell death protein 1 (PD-1) or programmed cell death ligand 1(PD-L1) checkpoint inhibition monotherapy because of an ephemeral reversal of T cell dysfunction and failure to promote long-lasting immunological T cell memory. Activating costimulatory pathways to induce stronger T cell activation may improve the efficacy of checkpoint inhibition and lead to durable antitumor responses. We performed single-cell RNA sequencing of more than 2000 tumor-infiltrating CD8+T cells in mice receiving both PD-1 and GITR (glucocorticoid-induced tumor necrosis factor receptor–related protein) antibodies and found that this combination synergistically enhanced the effector function of expanded CD8+T cells by restoring the balance of key homeostatic regulators CD226 and T cell immunoreceptor with Ig and ITIM domains (TIGIT), leading to a robust survival benefit. Combination therapy decreased CD8+T cell dysfunction and induced a highly proliferative precursor effector memory T cell phenotype in a CD226-dependent manner. PD-1 inhibition rescued CD226 activity by preventing PD-1–Src homology region 2 (SHP2) dephosphophorylation of the CD226 intracellular domain, whereas GITR agonism decreased TIGIT expression. Unmasking the molecular pathways driving durable antitumor responses will be essential to the development of rational approaches to optimizing cancer immunotherapy.


2013 ◽  
Vol 81 (11) ◽  
pp. 4171-4181 ◽  
Author(s):  
Laura A. Cooney ◽  
Megha Gupta ◽  
Sunil Thomas ◽  
Sebastian Mikolajczak ◽  
Kimberly Y. Choi ◽  
...  

ABSTRACTVaccination with a single dose of genetically attenuated malaria parasites can induce sterile protection against sporozoite challenge in the rodentPlasmodium yoeliimodel. Protection is dependent on CD8+T cells, involves perforin and gamma interferon (IFN-γ), and is correlated with the expansion of effector memory CD8+T cells in the liver. Here, we have further characterized vaccine-induced changes in the CD8+T cell phenotype and demonstrated significant upregulation of CD11c on CD3+CD8b+T cells in the liver, spleen, and peripheral blood. CD11c+CD8+T cells are predominantly CD11ahiCD44hiCD62L−, indicative of antigen-experienced effector cells. Followingin vitrorestimulation with malaria-infected hepatocytes, CD11c+CD8+T cells expressed inflammatory cytokines and cytotoxicity markers, including IFN-γ, tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), perforin, and CD107a. CD11c−CD8+T cells, on the other hand, expressed negligible amounts of all inflammatory cytokines and cytotoxicity markers tested, indicating that CD11c marks multifunctional effector CD8+T cells. Coculture of CD11c+, but not CD11c−, CD8+T cells with sporozoite-infected primary hepatocytes significantly inhibited liver-stage parasite development. Tetramer staining for the immunodominant circumsporozoite protein (CSP)-specific CD8+T cell epitope demonstrated that approximately two-thirds of CSP-specific cells expressed CD11c at the peak of the CD11c+CD8+T cell response, but CD11c expression was lost as the CD8+T cells entered the memory phase. Further analyses showed that CD11c+CD8+T cells are primarily KLRG1+CD127−terminal effectors, whereas all KLRG1−CD127+memory precursor effector cells are CD11c−CD8+T cells. Together, these results suggest that CD11c marks a subset of highly inflammatory, short-lived, antigen-specific effector cells, which may play an important role in eliminating infected hepatocytes.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Roger M Krzyzewski ◽  
Magdalena K Stachura ◽  
Mariusz Krupa ◽  
Rafal Morga ◽  
Agnieszka Sagan ◽  
...  

Introduction: Recently the role of adaptive immunity has been implied by microarray studies. But the results are contradictory. T-cell infiltration is a frequent histological finding in ruptured IA, T-cell phenotype, characteristic and true quantitation remains unknown. We preformed a prospective study to determine the subpopulation and expression of activation markers of T-cells infiltrating ruptured IA in relation to peripheral blood. Hypothesis: IA have different subsets and activation levels of T-cells than peripheral blood. Methods: We collected the tissue of ruptured IA of 8 patients operated on within 24 hours after subarachnoid hemorrhage symptoms onset. IA tissue was digested, stained with fluorescently labeled monoclonal antibodies and submitted to flow cytometry. In addition we collected and analyzed venous blood from 6 age, sex and risk factor-matched controls. Results: CD4+ cells are less prevalent in IA tissue than in peripheral blood (42.14±17.28 vs. 65.88±5.32%; p=0.011), while there was no difference in CD8+ T-cells infiltrating IA (30.28±9.07 vs. 27.78±5.45%; p=0.585), and double negative (CD4-CD8-CD3+) T-cells were more prevalent in wall of IA than in circulation, (15.68±11.94 vs. 2.81±1.32%; p=0.026). Importantly, CD4+ infiltrating IA wall showed higher expression of HLA-DR (25.9±6.42 vs. 9.19± 3.58%; p<0.001) higher expression of CD 69 (26.8±19.66 vs. 2.73±0.93%; p=0.014). Similarly, there significantly more CD8+ cells showed HLA-DR+ in the IA than in blood. (45.96±15.57 vs. 22.47±11.46%; p=0.018) and CD69 (30.32±22.73 vs. 5.03±1.55%; p=0.022). Double negative cells in IA also had higher expression of HLA-DR (46.56±21.40 vs. 22.58±5.1%; p=0.025), CD69 (31.05±16.79 vs. 7.83±2.05%; p=0.016). Conclusion: The tissue of ruptured IA is highly infiltrated by T-cells which show high expression of activation markers such as CD69 or HLA-DR. The importance of these cells to immunopathogenesis of intracranial aneurysm rupture should be further characterized.


2011 ◽  
Vol 18 (5) ◽  
pp. 717-723 ◽  
Author(s):  
Karen L. Wozniak ◽  
Mattie L. Young ◽  
Floyd L. Wormley

ABSTRACTIndividuals with defects in T cell-mediated immunity (CMI) are highly susceptible to infection withCryptococcus neoformans. The purpose of these studies was to determine if protection against experimental pulmonary cryptococcosis can be generated in T cell-deficient hosts. BALB/c mice were depleted of CD4+and/or CD8+T cells or given an isotype control antibody prior to vaccination with aC. neoformansstrain, designated H99γ, previously shown to induce protection againstC. neoformansinfection in immunocompetent mice. Mice depleted of CD4+or CD8+T cells, but not both subsets, survived an acute pulmonary infection withC. neoformansstrain H99γ and a subsequent second challenge with wild-typeC. neoformansstrain H99. We observed a significant increase in the percentage of CD4+and CD8+T cells expressing the activation marker CD69 in the lungs of mice immunized withC. neoformansstrain H99γ prior to a secondary challenge with wild-type cryptococci. CD4+T cells within the lungs of immunized mice also appeared to acquire a predominantly activated effector memory cell phenotype (CD69+CD44+CCR7−CD45RB−CD62L−) following a second pulmonary challenge with wild-typeC. neoformans, compared to CD4+T cells from naïve mice. Lastly, immunization of immunocompetent mice withC. neoformansstrain H99γ prior to depletion of CD4+and/or CD8+T cells resulted in significant protection against a second challenge with wild-typeC. neoformans. Our studies demonstrate that protective immunity against pulmonary cryptococcosis can be generated in immunosuppressed hosts, thus supporting the development of cryptococcal vaccines.


2009 ◽  
Vol 29 (14) ◽  
pp. 3894-3904 ◽  
Author(s):  
Tomofusa Fukuyama ◽  
Lawryn H. Kasper ◽  
Fayçal Boussouar ◽  
Trushar Jeevan ◽  
Jan van Deursen ◽  
...  

ABSTRACT Defining the chromatin modifications and transcriptional mechanisms that direct the development of different T-cell lineages is a major challenge in immunology. The transcriptional coactivators CREB binding protein (CBP) and the closely related p300, which comprise the KAT3 family of histone/protein lysine acetyltransferases, interact with over 50 T-lymphocyte-essential transcriptional regulators. We show here that CBP, but not p300, modulates the thymic development of conventional adaptive T cells versus those having unconventional innate functions. Conditional inactivation of CBP in the thymus yielded CD8 single-positive (SP) thymocytes with an effector-, memory-, or innate-like T-cell phenotype. In this regard, CD8 SP thymocytes in CBP mutant mice were phenotypically similar to those reported for Itk and Rlk protein tyrosine kinase mutants, including the increased expression of the T-cell master regulatory transcription factor eomesodermin (Eomes) and the interleukin-2 and -15 receptor beta chain (CD122) and an enhanced ability to rapidly produce gamma interferon. CBP was required for the expression of the Itk-dependent genes Egr2, Egr3, and Il2, suggesting that CBP helps mediate Itk-responsive transcription. CBP therefore defines a nuclear component of the signaling pathways that demarcate the development of innate and adaptive naïve CD8+ T cells in the thymus.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3332-3332
Author(s):  
Spyridoula Vasileiou ◽  
Annie Turney ◽  
Manik Kuvalekar ◽  
Shivani Mukhi ◽  
Ayumi Watanabe ◽  
...  

Abstract Acute upper and lower respiratory tract infections (RTIs) due to community-acquired respiratory viruses (CARVs) including respiratory syncytial virus (RSV), influenza, parainfluenza virus (PIV) and human metapneumovirus (hMPV) are a leading cause of morbidity and mortality worldwide, with individuals whose immune systems are naïve (e.g. children) or compromised being most vulnerable. In allogeneic hematopoietic stem cell transplant (HSCT) recipients, the incidence of CARV-related respiratory viral infection reaches 29%. Most patients initially present with mild symptoms of upper RTI and in 50% of cases the infection progresses to a lower RTI with severe symptoms including bronchiolitis and pneumonia and mortality rates as high as 50%. Currently there are no approved vaccines nor antiviral drugs for hMPV and PIV, while the preventative vaccine for Influenza is not indicated earlier than 6 months post-HSCT. Aerosolized ribavirin is FDA-approved for the treatment of RSV infections, but it is logistically difficult to administer and comes at a considerable cost. Thus, the lack of approved antiviral agents combined with the high cost of antiviral therapy emphasize the need for alternative treatment strategies for CARVs. Our group has previously demonstrated the safety and clinical efficacy of using adoptive T-cell transfer for the treatment of both latent [Epstein-Barr virus (EBV), cytomegalovirus (CMV), BK virus (BKV), human herpesvirus 6 (HHV6)] and lytic [adenovirus (AdV)] viruses in recipients of allo-HSCT by generation of multivirus-specific T cell (VST) lines. Given that susceptibility to CARVs is highly associated with underlying immune deficiency, we wanted to explore the potential for extending this approach to Influenza, RSV, hMPV and PIV3 infections. In order to do so, we exposed PBMCs from healthy donors to a cocktail of pepmixes (overlapping peptide libraries) spanning immunogenic antigens derived from our target viruses [Influenza - NP1 and MP1; RSV - N and F; hMPV - F, N, M2-1 and M; PIV3 - M, HN, N and F] followed by expansion in the presence of activating cytokines in a G-Rex device. Over 10-13 days we achieved an average 8.5 fold expansion [increase from 0.25x107 PBMCs/cm2 to mean 1.9±0.2x107 cells/cm2; n=12). Cells were comprised almost exclusively of CD3+ T cells (96.2±0.6%; mean±SEM), with a mixture of cytotoxic (CD8+) and helper (CD4+) T cells and a phenotype consistent with immediate effector function and long term memory, as evidenced by upregulation of the activation markers CD25, CD69, and CD28 as well as expression of central (CD45RO+/CD62L+) and effector memory markers (CD45RO+/CD62L−), with minimal PD1 or Tim3 expression. Anti-viral specificity of multi-R-VSTs was tested in an IFNγ Elispot assay using each of the individual stimulating antigens as an immunogen and all 12 lines screened proved to be reactive against all 4 of the target viruses [Influenza: mean 735±75.6 SFC/2x105, RSV: 758±69.8, hMPV: 526±100.8, PIV3: 391±93.7]. As demonstrated by intracellular cytokine staining, the immune response was mediated by both CD4+ and CD8+ T cell subsets, and the majority of IFNγ-producing cells also produced TNFα. In addition, the cells secreted GM-CSF as measured by Luminex array, with baseline levels of Th2/suppressive cytokines. Furthermore, upon antigenic stimulation our VSTs produced the effector molecule Granzyme B suggesting the cytolytic potential of these expanded cells, which was confirmed in a standard Cr51-release assay against viral pepmix-loaded autologous PHA blasts. Viral antigen-loaded targets were specifically recognized and lysed by our VSTs, while there was no evidence of activity against non-infected autologous or allogeneic targets. In conclusion, we have shown that it is feasible to rapidly generate a single preparation of polyclonal multi-respiratory (multi-R)-VSTs with specificities directed to Influenza, RSV, hMPV and PIV3 and a total of 12 encoded antigens using GMP-compliant manufacturing methodologies. The expanded cells are Th1-polarized, polyfunctional and selectively able to react to and kill viral antigen-expressing targets with no auto- or alloreactivity, attesting to both their selectivity and their safety for clinical use in HSCT recipients. We anticipate such multi-R-VSTs will provide clinical benefit in preventing or treating CARV infections in the immunocompromised. Disclosures Vera: Viracyte: Equity Ownership. Tzannou:Viracyte: Consultancy, Equity Ownership. Leen:Viracyte: Equity Ownership.


Author(s):  
Tobias Roider ◽  
Berit J. Brinkmann ◽  
Vladislav Kim ◽  
Mareike Knoll ◽  
Carolin Kolb ◽  
...  

Bispecific antibodies (BsAb) can induce long-term responses in refractory and relapsed B cell lymphoma patients. Nevertheless, response rates across patients are heterogenous and the factors determining quality and duration of responses are poorly understood. In order to identify key determinants of response to BsAb, we established a primary, autologous culture model allowing us to mimic treatment with CD3xCD19 and CD3xCD20 BsAb within the lymph node microenvironment ex vivo. T cell-mediated killing of lymphoma cells and proliferation of T cells varied significantly among patients but highly correlated between BsAb targeting CD20 or CD19. Ex vivo response to BsAb was significantly associated with expansion of T cells and secretion of effector molecules, such as granzyme B and perforin, but not with expression of T cell exhaustion (e.g. PD1, TIM3) or activation markers (e.g. CD25, CD69) or formation of intercellular contacts. In addition, we identified a distinct phenotype of regulatory T cells that was linked to ex vivo response independently from T cell frequency at baseline. High expression levels of Aiolos (IKZF1), ICOS and CXCR5 were positively associated with ex vivo response, whereas strong expression of Helios (IKZF2) had unfavorable impact on ex vivo response to BsAb. Furthermore, we demonstrated that lenalidomide, nivolumab and atezolizumab improved ex vivo response to BsAb by potentiating T cell effector functions. In summary, our ex vivo study identifies a distinct regulatory T cell phenotype as potential contributor to treatment failure of BsAb, and suggests drug combinations of high clinical relevance that could improve the efficacy of BsAb.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5626-5626
Author(s):  
Irene Scarfò ◽  
Kathleen Gallagher ◽  
Marcela V. Maus ◽  
Rebecca Larson ◽  
Maegan Sheehan ◽  
...  

Chimeric antigen receptor T-cells (CAR-T) have emerged as an extremely promising therapy for hematological malignancies. The immunophenotype of apheresis material and the CAR-T cell product is known to be predictive of the likelihood of response to treatment of certain malignancies. Central memory and stem cell-like memory T cell phenotypes are associated with a more sustained proliferative response and long-term CAR-T persistence (Fraietta et al, Nature Medicine, 2018). There is an unmet need for standardized methods and reagents to reliably profile the memory phenotype of CAR-Ts to better evaluate product quality, and support improvements in CAR-T manufacturing. The BD Biosciences dried memory T-cell panel contains a pre-validated mixture of 7 antibodies for the identification of naïve, stem cell memory, central memory and effector memory CD4+ and CD8+ T cell subsets. The pre-mixed dried antibody tube offers consistency in staining profiles over time and reduces the risk of operator errors. Additional drop-in antibodies can complement the panel and enable more in-depth evaluation of the T cell phenotype. Here we demonstrate the use of this panel with drop-in markers to monitor changes in expression of PD-1, TIM-3, LAG-3, HLA-DR, CD45RO, and CXCR3 on T cells transduced to express our novel anti-CD37 CAR. Cells were stained at day 0 prior to transduction, day 7, and following resting and re-stimulation, and acquired on a 12 color BD FACS Lyric. The use of a standardized memory T-cell panel will allow us to more accurately evaluate how T-cell phenotype impacts on the efficacy and longevity of response in patients receiving CAR-T therapies. Disclosures Maus: INFO PENDING: Other: INFO PENDING. Bornheimer:BD Biosciences: Employment. Hanley:BD Biosciences: Employment. Frigault:Novartis: Patents & Royalties: Royalty; Arcellx, Celgene, Foundation Medicine, Kite/Gilead, Nkarta, Novartis, and Xenetic: Consultancy.


2018 ◽  
Author(s):  
Jinyun Yuan ◽  
Janice Tenant ◽  
Thomas Pacatte ◽  
Christopher Eickhoff ◽  
Azra Blazevic ◽  
...  

AbstractFailure of the most recent tuberculosis (TB) vaccine trial to boost BCG mediated anti-TB immunity despite highly durable Th1-specific central (TCM) and effector (TEM) memory cell responses, highlights the importance of identifying optimal T cell targets for protective vaccines. Here we describe a novel, Mycobacterium tuberculosis (Mtb)-specific IFN-γ+CD4+ T cell population expressing surface markers characteristic of naïve T cells (TNLM), that were induced in both human (CD45RA+CCR7+CD27+CD95-) and murine (CD62L+CD44-Sca-1+CD122-) systems in response to mycobacteria. In BCG vaccinated subjects and those with latent TB infection, TNLM cells, compared to bonafide naïve CD4+ T cells were identified by absence of CD95 expression and had increased expression CCR7 and CD27, the activation markers T-bet, CD69 and PD-1 and the survival marker CD74. Increased TNLM frequencies were noted in the lung and spleen of wild type C57BL6 mice at 2 weeks after infection with Mtb, and progressively decreased at later time points, a pattern not seen in TNF-α+CD4+ T cells expressing naïve cell surface markers. Importantly, adoptive transfer of highly purified TNLM from vaccinated ESAT-61-20-specific TCR transgenic mice conferred superior protection against Mtb infection in Rag-/- mice when compared with total meory populations (central and effector memory cells). Thus, TNLM cells may represent a memory T cell population that if optimally targeted may significantly improve future TB vaccine responses.


2007 ◽  
Vol 88 (10) ◽  
pp. 2740-2748 ◽  
Author(s):  
Litao Yang ◽  
Hui Peng ◽  
Zhaoling Zhu ◽  
Gang Li ◽  
Zitong Huang ◽  
...  

The membrane (M) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is a major glycoprotein with multiple biological functions. In this study, we found that memory T cells against M protein were persistent in recovered SARS patients by detecting gamma interferon (IFN-γ) production using ELISA and ELISpot assays. Flow cytometric analysis showed that both CD4+ and CD8+ T cells were involved in cellular responses to SARS-CoV M antigen. Furthermore, memory CD8+ T cells displayed an effector memory cell phenotype expressing CD45RO− CCR7− CD62L−. In contrast, the majority of IFN-γ + CD4+ T cells were central memory cells with the expression of CD45RO+ CCR7+ CD62L−. The epitope screening from 30 synthetic overlapping peptides that cover the entire SARS-CoV M protein identified four human T-cell immunodominant peptides, p21-44, p65-91, p117-140 and p200-220. All four immunodominant peptides could elicit cellular immunity with a predominance of CD8+ T-cell response. This data may have important implication for developing SARS vaccines.


Sign in / Sign up

Export Citation Format

Share Document