scholarly journals Non-line-of-sight reconstruction with signal–object collaborative regularization

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xintong Liu ◽  
Jianyu Wang ◽  
Zhupeng Li ◽  
Zuoqiang Shi ◽  
Xing Fu ◽  
...  

AbstractNon-line-of-sight imaging aims at recovering obscured objects from multiple scattered lights. It has recently received widespread attention due to its potential applications, such as autonomous driving, rescue operations, and remote sensing. However, in cases with high measurement noise, obtaining high-quality reconstructions remains a challenging task. In this work, we establish a unified regularization framework, which can be tailored for different scenarios, including indoor and outdoor scenes with substantial background noise under both confocal and non-confocal settings. The proposed regularization framework incorporates sparseness and non-local self-similarity of the hidden objects as well as the smoothness of the signals. We show that the estimated signals, albedo, and surface normal of the hidden objects can be reconstructed robustly even with high measurement noise under the proposed framework. Reconstruction results on synthetic and experimental data show that our approach recovers the hidden objects faithfully and outperforms state-of-the-art reconstruction algorithms in terms of both quantitative criteria and visual quality.

2016 ◽  
Vol 10 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Hao Chu ◽  
Cheng-dong Wu

The wireless sensor network (WSN) has received increasing attention since it has many potential applications such as the internet of things and smart city. The localization technology is critical for the application of the WSN. The obstacles induce the larger non-line of sight (NLOS) error and it may decrease the localization accuracy. In this paper, we mainly investigate the non-line of sight localization problem for WSN. Firstly, the Pearson's chi-squared testing is employed to identify the propagation condition. Secondly, the particle swarm optimization based localization method is proposed to estimate the position of unknown node. Finally the simulation experiments are implemented. The simulation results show that the proposed method owns higher localization accuracy when compared with other two methods.


2007 ◽  
Author(s):  
Jonathon Emis ◽  
Bryan Huang ◽  
Timothy Jones ◽  
Mei Li ◽  
Don Tumbocon

Author(s):  
Reza Alebrahim ◽  
Pawel Packo ◽  
Mirco Zaccariotto ◽  
Ugo Galvanetto

In this study, methods to mitigate anomalous wave propagation in 2-D Bond-Based Peridynamics (PD) are presented. Similarly to what happens in classical non-local models, an irregular wave transmission phenomenon occurs at high frequencies. This feature of the dynamic performance of PD, limits its potential applications. A minimization method based on the weighted residual point collocation is introduced to substantially extend the frequency range of wave motion modeling. The optimization problem, developed through inverse analysis, is set up by comparing exact and numerical dispersion curves and minimizing the error in the frequency-wavenumber domain. A significant improvement in the wave propagation simulation using Bond-Based PD is observed.


2021 ◽  
Vol 40 (4) ◽  
pp. 1-12
Author(s):  
Clara Callenberg ◽  
Zheng Shi ◽  
Felix Heide ◽  
Matthias B. Hullin

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 230 ◽  
Author(s):  
Slavisa Tomic ◽  
Marko Beko

This work addresses the problem of target localization in adverse non-line-of-sight (NLOS) environments by using received signal strength (RSS) and time of arrival (TOA) measurements. It is inspired by a recently published work in which authors discuss about a critical distance below and above which employing combined RSS-TOA measurements is inferior to employing RSS-only and TOA-only measurements, respectively. Here, we revise state-of-the-art estimators for the considered target localization problem and study their performance against their counterparts that employ each individual measurement exclusively. It is shown that the hybrid approach is not the best one by default. Thus, we propose a simple heuristic approach to choose the best measurement for each link, and we show that it can enhance the performance of an estimator. The new approach implicitly relies on the concept of the critical distance, but does not assume certain link parameters as given. Our simulations corroborate with findings available in the literature for line-of-sight (LOS) to a certain extent, but they indicate that more work is required for NLOS environments. Moreover, they show that the heuristic approach works well, matching or even improving the performance of the best fixed choice in all considered scenarios.


2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Bin Wang ◽  
Ming-Yang Zheng ◽  
Jin-Jian Han ◽  
Xin Huang ◽  
Xiu-Ping Xie ◽  
...  

Author(s):  
Masaki Kaga ◽  
Takahiro Kushida ◽  
Tsuyoshi Takatani ◽  
Kenichiro Tanaka ◽  
Takuya Funatomi ◽  
...  

Abstract This paper presents a non-line-of-sight technique to estimate the position and temperature of an occluded object from a camera via reflection on a wall. Because objects with heat emit far infrared light with respect to their temperature, positions and temperatures are estimated from reflections on a wall. A key idea is that light paths from a hidden object to the camera depend on the position of the hidden object. The position of the object is recovered from the angular distribution of specular and diffuse reflection component, and the temperature of the heat source is recovered from the estimated position and the intensity of reflection. The effectiveness of our method is evaluated by conducting real-world experiments, showing that the position and the temperature of the hidden object can be recovered from the reflection destination of the wall by using a conventional thermal camera.


Sign in / Sign up

Export Citation Format

Share Document