scholarly journals Novel genome-wide associations for anhedonia, genetic correlation with psychiatric disorders, and polygenic association with brain structure

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Joey Ward ◽  
Laura M. Lyall ◽  
Richard A. I. Bethlehem ◽  
Amy Ferguson ◽  
Rona J. Strawbridge ◽  
...  

AbstractAnhedonia is a core symptom of several psychiatric disorders but its biological underpinnings are poorly understood. We performed a genome-wide association study of state anhedonia in 375,275 UK Biobank participants and assessed for genetic correlation between anhedonia and neuropsychiatric conditions (major depressive disorder, schizophrenia, bipolar disorder, obsessive compulsive disorder and Parkinson’s Disease). We then used a polygenic risk score approach to test for association between genetic loading for anhedonia and both brain structure and brain function. This included: magnetic resonance imaging (MRI) assessments of total grey matter volume, white matter volume, cerebrospinal fluid volume, and 15 cortical/subcortical regions of interest; diffusion tensor imaging (DTI) measures of white matter tract integrity; and functional MRI activity during an emotion processing task. We identified 11 novel loci associated at genome-wide significance with anhedonia, with a SNP heritability estimate (h2SNP) of 5.6%. Strong positive genetic correlations were found between anhedonia and major depressive disorder, schizophrenia and bipolar disorder; but not with obsessive compulsive disorder or Parkinson’s Disease. Polygenic risk for anhedonia was associated with poorer brain white matter integrity, smaller total grey matter volume, and smaller volumes of brain regions linked to reward and pleasure processing, including orbito-frontal cortex. In summary, the identification of novel anhedonia-associated loci substantially expands our current understanding of the biological basis of state anhedonia and genetic correlations with several psychiatric disorders confirm the utility of this phenotype as a transdiagnostic marker of vulnerability to mental illness. We also provide the first evidence that genetic risk for state anhedonia influences brain structure, including in regions associated with reward and pleasure processing.

2019 ◽  
Author(s):  
Joey Ward ◽  
Laura M. Lyall ◽  
Richard A. I. Bethlehem ◽  
Amy Ferguson ◽  
Rona J. Strawbridge ◽  
...  

AbstractAnhedonia is a core feature of several psychiatric disorders but its biological underpinnings are poorly understood. We performed a genome-wide association study of anhedonia in 375,275 UK Biobank participants and assessed for genetic correlation between anhedonia and neuropsychiatric conditions (major depressive disorder, schizophrenia, bipolar disorder, obsessive compulsive disorder and Parkinson’s Disease). We then used a polygenic risk score approach to test for association between genetic loading for anhedonia and both brain structure and brain function. This included: magnetic resonance imaging (MRI) assessments of total grey matter volume, white matter volume, cerebrospinal fluid volume, and 15 cortical/subcortical regions of interest; diffusion tensor imaging (DTI) measures of white matter tract integrity; and functional MRI activity during an emotion processing task. We identified 11 novel loci associated at genome-wide significance with anhedonia, with a SNP heritability estimate (h2SNP) of 5.6%. Strong positive genetic correlations were found between anhedonia and major depressive disorder, schizophrenia and bipolar disorder; but not with obsessive compulsive disorder or Parkinson’s Disease. Polygenic risk for anhedonia was associated with poorer brain white matter integrity, smaller total grey matter volume, and smaller volumes of brain regions linked to reward and pleasure processing, including nucleus accumbens, caudate and medial frontal cortex. In summary, the identification of novel anhedonia-associated loci substantially expands our current understanding of the biological basis of anhedonia and genetic correlations with several psychiatric disorders confirm the utility of this trait as a transdiagnostic marker of vulnerability to mental illness. We also provide the first evidence that genetic risk for anhedonia influences brain structure, particularly in regions associated with reward and pleasure processing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xingxing Zhu ◽  
Joey Ward ◽  
Breda Cullen ◽  
Donald M. Lyall ◽  
Rona J. Strawbridge ◽  
...  

AbstractAnhedonia is a core symptom of multiple psychiatric disorders and has been associated with alterations in brain structure. Genome-wide association studies suggest that anhedonia is heritable, with a polygenic architecture, but few studies have explored the association between genetic loading for anhedonia—indexed by polygenic risk scores for anhedonia (PRS-anhedonia)—and structural brain imaging phenotypes. Here, we investigated how anhedonia and PRS-anhedonia were associated with brain structure within the UK Biobank cohort. Brain measures (including total grey/white matter volumes, subcortical volumes, cortical thickness (CT) and white matter integrity) were analysed using linear mixed models in relation to anhedonia and PRS-anhedonia in 19,592 participants (9225 males; mean age = 62.6 years, SD = 7.44). We found that state anhedonia was significantly associated with reduced total grey matter volume (GMV); increased total white matter volume (WMV); smaller volumes in thalamus and nucleus accumbens; reduced CT within the paracentral cortex, the opercular part of inferior frontal gyrus, precentral cortex, insula and rostral anterior cingulate cortex; and poorer integrity of many white matter tracts. PRS-anhedonia was associated with reduced total GMV; increased total WMV; reduced white matter integrity; and reduced CT within the parahippocampal cortex, superior temporal gyrus and insula. Overall, both state anhedonia and PRS-anhedonia were associated with individual differences in multiple brain structures, including within reward-related circuits. These associations may represent vulnerability markers for psychopathology relevant to a range of psychiatric disorders.


2020 ◽  
Author(s):  
Eshim S Jami ◽  
Anke R Hammerschlag ◽  
Hill F Ip ◽  
Andrea G Allegrini ◽  
Beben Benyamin ◽  
...  

Internalising symptoms in childhood and adolescence are as heritable as adult depression and anxiety, yet little is known of their molecular basis. This genome-wide association meta-analysis of internalising symptoms included repeated observations from 64,641 individuals, aged between 3 and 18. The N-weighted meta-analysis of overall internalising symptoms (INToverall) detected no genome-wide significant hits and showed low SNP heritability (1.66%, 95% confidence intervals 0.84-2.48%, Neffective=132,260). Stratified analyses showed rater-based heterogeneity in genetic effects, with self-reported internalising symptoms showing the highest heritability (5.63%, 95% confidence intervals 3.08-8.18%). Additive genetic effects on internalising symptoms appeared stable over age, with overlapping estimates of SNP heritability from early-childhood to adolescence. Gene-based analyses showed significant associations with three genes: WNT3 (p=1.13×10-06), CCL26 (p=1.88×10-06), and CENPO (p=2.54×10-06). Of these, WNT3 was previously associated with neuroticism, with which INToverall also shared a strong genetic correlation (rg=0.76). Genetic correlations were also observed with adult anxiety, depression, and the wellbeing spectrum (|rg|> 0.70), as well as with insomnia, loneliness, attention-deficit hyperactivity disorder, autism, and childhood aggression (range |rg|=0.42-0.60), whereas there were no robust associations with schizophrenia, bipolar disorder, obsessive-compulsive disorder, or anorexia nervosa. Overall, childhood and adolescent internalising symptoms share substantial genetic vulnerabilities with adult internalising disorders and other childhood psychiatric traits, which could explain both the persistence of internalising symptoms over time, and the high comorbidity amongst childhood psychiatric traits. Reducing phenotypic heterogeneity in childhood samples will be key in paving the way to future GWAS success.


2020 ◽  
Author(s):  
Niccolò E. Mencacci ◽  
Regina Reynolds ◽  
Sonia Garcia Ruiz ◽  
Jana Vandrovcova ◽  
Paola Forabosco ◽  
...  

AbstractDystonia is a neurological disorder characterized by sustained or intermittent muscle contractions causing abnormal movements and postures, often occurring in absence of any structural brain abnormality. Psychiatric comorbidities, including anxiety, depression, obsessive-compulsive disorder and schizophrenia, are frequent in dystonia patients. While mutations in a fast-growing number of genes have been linked to Mendelian forms of dystonia, the cellular, anatomical, and molecular basis remains unknown for most genetic forms of dystonia, as does its genetic and biological relationship to neuropsychiatric disorders. Here we applied an unbiased systems-biology approach to explore the cellular specificity of all currently known dystonia-associated genes, predict their functional relationships, and test whether dystonia and neuropsychiatric disorders share a genetic relationship. To determine the cellular specificity of dystonia-associated genes in the brain, single-nuclear transcriptomic data derived from mouse brain was used together with expression-weighted cell-type enrichment. To identify functional relationships amongst dystonia-associated genes, we determined the enrichment of these genes in co-expression networks constructed from ten human brain regions. Stratified linkage-disequilibrium score regression was used to test whether co-expression modules enriched for dystonia-associated genes significantly contribute to the heritability of anxiety, major depressive disorder, obsessive-compulsive disorder, schizophrenia, and Parkinson’s disease. Dystonia-associated genes were significantly enriched in adult nigral dopaminergic neurons and striatal medium spiny neurons. Furthermore, four of the 220 gene co-expression modules tested were significantly enriched for the dystonia-associated genes. The identified modules were derived from the substantia nigra, putamen, frontal cortex, and white matter, and were all significantly enriched for genes associated with synaptic function. Finally, we demonstrated significant enrichments of the heritability of depression, obsessive-compulsive disorder and schizophrenia, but not anxiety and Parkinson’s disease, within the putamen and white matter modules. In conclusion, multiple dystonia-associated genes interact and contribute to pathogenesis likely through dysregulation of synaptic signalling in striatal medium spiny neurons, adult nigral dopaminergic neurons and frontal cortical neurons. Furthermore, the enrichment of the heritability of psychiatric disorders in the co-expression modules enriched for dystonia-associated genes indicates that psychiatric symptoms associated with dystonia are likely to be intrinsic to its pathophysiology.


2018 ◽  
Author(s):  
Irwin D. Waldman ◽  
Holly E. Poore ◽  
Justin M. Luningham ◽  
Jingjing Yang

Genome-wide association studies (GWAS) have revealed hundreds of genetic loci associated with the vulnerability to major psychiatric disorders, and post-GWAS analyses have shown substantial genetic correlations among these disorders. This evidence supports the existence of a higher-order structure of psychopathology at both the genetic and phenotypic levels. Despite recent efforts by collaborative consortia such as the Hierarchical Taxonomy of Psychopathology (HiTOP), this structure remains unclear. In this study, we tested multiple alternative structural models of psychopathology at the genomic level, using the genetic correlations among fourteen psychiatric disorders and related psychological traits estimated from GWAS summary statistics. The best-fitting model included four correlated higher-order factors – externalizing, internalizing, thought problems, and neurodevelopmental disorders – which showed distinct patterns of genetic correlations with external validity variables and accounted for substantial genetic variance in their constituent disorders. A bifactor model including a general factor of psychopathology as well as the four specific factors fit worse than the above model. Several model modifications were tested to explore the placement of some disorders – such as bipolar disorder, obsessive-compulsive disorder, and eating disorders – within the broader psychopathology structure. The best-fitting model indicated that eating disorders and obsessive-compulsive disorder, on the one hand, and bipolar disorder and schizophrenia, on the other, load together on the same thought problems factor. These findings provide support for several of the HiTOP higher-order dimensions and suggest a similar structure of psychopathology at the genomic and phenotypic levels.


Author(s):  
Bertram Möller ◽  
Andrea J. Levinson ◽  
Zafiris J. Daskalakis

This article reviews studies carried out on the role of transcranial magnetic stimulation (TMS) as an important neurophysiological tool to assess a variety of cortical neurophysiological processes including excitability, inhibition, and plasticity. It discusses how TMS has helped to enhance the understanding of the neurobiology and the treatment of a variety of psychiatric disorders including schizophrenia (SCZ), major depressive disorder (MDD), bipolar disorder (BD), obsessive-compulsive disorder (OCD), and Tourette's disorder (TD). The findings from these studies demonstrate that TMS is a useful tool to evaluate several neurophysiological processes that may be altered in psychiatric illness. Evidence suggests that disorders including SCZ, MDD, BD, and OCD may, in part, be associated with deficient inhibition, altered cortical excitability, and disrupted neural plasticity. Evidence also suggests that psychotropic medications alter the mechanisms, often in a direction opposite to that of illness, thus reflecting on some of their therapeutic effects.


1995 ◽  
Vol 10 (8) ◽  
pp. 379-382 ◽  
Author(s):  
A Milanfranchi ◽  
D Marazziti ◽  
C Pfanner ◽  
S Presta ◽  
P Lensi ◽  
...  

SummaryThe authors investigated the comorbidity between obsessive-compulsive disorder (OCD) and other psychiatric disorders in a group of 154 outpatients. The influence of an associate major depressive disorder (MDD) on the outcome of treatment with clomipramine was examined in a subgroup of 52 patients. The results showed that MDD was the most frequent disorder associated with OCD (almost 20% of the patients), followed by generalized anxiety and panic disorder. The co-presence of depression delayed the effect of clomipramine.


2019 ◽  
Author(s):  
Hill F. Ip ◽  
Camiel M. van der Laan ◽  
Eva M. L. Krapohl ◽  
Isabell Brikell ◽  
Cristina Sánchez-Mora ◽  
...  

AbstractBackgroundHuman aggressive behavior (AGG) has a substantial genetic component. Here we present a large genome-wide association meta-analysis (GWAMA) of childhood AGG.MethodsWe analyzed assessments of AGG for a total of 328,935 observations from 87,485 children (aged 1.5 – 18 years), from multiple assessors, instruments, and ages, while accounting for sample overlap. We performed an overall analysis and meta-analyzed subsets of the data within rater, instrument, and age.ResultsHeritability based on the overall meta-analysis (AGGall) that could be attributed to Single Nucleotide Polymorphisms (SNPs) was 3.31% (SE=0.0038). No single SNP reached genome-wide significance, but gene-based analysis returned three significant genes: ST3GAL3 (P=1.6E-06), PCDH7 (P=2.0E-06) and IPO13 (P=2.5E-06). All three genes have previously been associated with educational traits. Polygenic scores based on our GWAMA significantly predicted aggression in a holdout sample of children and in retrospectively assessed childhood aggression. We obtained moderate-to-strong genetic correlations (rg‘s) with selected phenotypes from multiple domains, but hardly with any of the classical biomarkers thought to be associated with AGG. Significant genetic correlations were observed with most psychiatric and psychological traits (range |rg|: 0.19 –.1.00), except for obsessive-compulsive disorder. Aggression had a negative genetic correlation (rg =∼-0.5) with cognitive traits and age at first birth. Aggression was strongly genetically correlated with smoking phenotypes (range |rg|: 0.46 – 0.60). Genetic correlations between AGG and psychiatric disorders were strongest for mother- and self-reported AGG.ConclusionsThe current GWAMA of childhood aggression provides a powerful tool to interrogate the genetic etiology of AGG by creating individual polygenic scores and genetic correlations with psychiatric traits.


Sign in / Sign up

Export Citation Format

Share Document