scholarly journals In vivo detection of programmed cell death during mouse heart development

2019 ◽  
Vol 27 (4) ◽  
pp. 1398-1414 ◽  
Author(s):  
Kristel Martínez-Lagunas ◽  
Yoshifumi Yamaguchi ◽  
Cora Becker ◽  
Caroline Geisen ◽  
Marco C. DeRuiter ◽  
...  

Abstract Despite the great progress on the cell biology of programmed cell death (PCD), its incidence and exact time course during embryonic and particular heart development are still unclear. This is also due to the lack of models enabling to directly identify and monitor PCD cells at different time points in vivo. Herein we report generation of transgenic murine embryonic stem cell and mouse models expressing secreted Annexin V-YFP under control of the CAG promoter. This enables to visualize and quantify PCD in vitro and in vivo during embryonic development. At early embryonic stages we found Annexin V-YFP+ fluorescent cells in known areas of PCD, such as the otic ring and at the site of neural tube closing, underscoring its specificity for detection of PCD. We have focused our detailed analysis primarily on PCD in the embryonic heart for a better understanding of its role during development. Our findings reveal that PCD peaks at early stages of cardiogenesis (E9.5–E13.5) and strongly decreases thereafter. Moreover, the PCD cells in the heart are predominantly cardiomyocytes, and an unexpected area of prominent cardiac PCD are the ventricular trabeculae (E9.5–E14.5). Thus, the sA5-YFP mouse line provides novel insight into the incidence and relevance of cardiac PCD during embryonic development ex- and in vivo.

2020 ◽  
Vol 31 (1) ◽  
pp. 3-10
Author(s):  
V. S. Nedzvetsky ◽  
V. Ya. Gasso ◽  
A. M. Hahut ◽  
I. A. Hasso

Cadmium is a common transition metal that entails an extremely wide range of toxic effects in humans and animals. The cytotoxicity of cadmium ions and its compounds is due to various genotoxic effects, including both DNA damage and chromosomal aberrations. Some bone diseases, kidney and digestive system diseases are determined as pathologies that are closely associated with cadmium intoxication. In addition, cadmium is included in the list of carcinogens because of its ability to initiate the development of tumors of several forms of cancer under conditions of chronic or acute intoxication. Despite many studies of the effects of cadmium in animal models and cohorts of patients, in which cadmium effects has occurred, its molecular mechanisms of action are not fully understood. The genotoxic effects of cadmium and the induction of programmed cell death have attracted the attention of researchers in the last decade. In recent years, the results obtained for in vivo and in vitro experimental models have shown extremely high cytotoxicity of sublethal concentrations of cadmium and its compounds in various tissues. One of the most studied causes of cadmium cytotoxicity is the development of oxidative stress and associated oxidative damage to macromolecules of lipids, proteins and nucleic acids. Brain cells are most sensitive to oxidative damage and can be a critical target of cadmium cytotoxicity. Thus, oxidative damage caused by cadmium can initiate genotoxicity, programmed cell death and inhibit their viability in the human and animal brains. To test our hypothesis, cadmium cytotoxicity was assessed in vivo in U251 glioma cells through viability determinants and markers of oxidative stress and apoptosis. The result of the cell viability analysis showed the dose-dependent action of cadmium chloride in glioma cells, as well as the generation of oxidative stress (p <0.05). Calculated for 48 hours of exposure, the LD50 was 3.1 μg×ml-1. The rates of apoptotic death of glioma cells also progressively increased depending on the dose of cadmium ions. A high correlation between cadmium concentration and apoptotic response (p <0.01) was found for cells exposed to 3–4 μg×ml-1 cadmium chloride. Moreover, a significant correlation was found between oxidative stress (lipid peroxidation) and induction of apoptosis. The results indicate a strong relationship between the generation of oxidative damage by macromolecules and the initiation of programmed cell death in glial cells under conditions of low doses of cadmium chloride. The presented results show that cadmium ions can induce oxidative damage in brain cells and inhibit their viability through the induction of programmed death. Such effects of cadmium intoxication can be considered as a model of the impact of heavy metal pollution on vertebrates.


Plant Methods ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 45 ◽  
Author(s):  
Bridget V Hogg ◽  
Joanna Kacprzyk ◽  
Elizabeth M Molony ◽  
Conor O'Reilly ◽  
Thomas F Gallagher ◽  
...  

2010 ◽  
Vol 63 (8) ◽  
pp. 692-696 ◽  
Author(s):  
Matteo Fassan ◽  
Marco Pizzi ◽  
Giorgio Battaglia ◽  
Luciano Giacomelli ◽  
Paola Parente ◽  
...  

AimTo test the contribution of programmed cell death 4 (PDCD4) tumour suppressor gene in Barrett's carcinogenesis.MethodsPDCD4 immunohistochemical expression was assessed in 88 biopsy samples obtained from histologically proven long-segment Barrett's mucosa (BM; 25 non-intestinal columnar metaplasia, 25 intestinal metaplasia (IM), 16 low-grade intraepithelial neoplasia (LG-IEN), 12 high-grade IEN (HG-IEN) and 10 Barrett's adenocarcinoma (BAc)). As controls, 25 additional samples of native oesophageal mucosa (N) were obtained from patients with dyspepsia. To further support the data, the expression levels of miR-21, an important PDCD4 expression regulator, in 14 N, 5 HG-IEN and 11 BAc samples were determined by quantitative real-time PCR analysis.ResultsPDCD4 immunostaining decreased progressively and significantly with the progression of the phenotypic changes occurring during Barrett's carcinogenesis (p<0.001). Normal basal squamous epithelial layers featured strong PDCD4 nuclear immunoreaction (mostly coexisting with weak–moderate cytoplasmic staining). Non-intestinal columnar metaplasia and intestinal metaplasia preserved a strong nuclear immunostaining; conversely, a significant decrease in PDCD4 nuclear expression was seen in dysplastic (LG-IEN and HG-IEN) and neoplastic lesions. Weak–moderate cytoplasmic immunostaining was evident in cases of LG-IEN, while HG-IEN and BAc samples showed weak cytoplasmic or no protein expression. As expected, miR-21 expression was significantly upregulated in HG-IEN and BAc samples, consistently with PDCD4 dysregulation.ConclusionsThese data support a significant role for PDCD4 downregulation in the progression of BM to BAc, and confirm miR-21 as a negative regulator of PDCD4 in vivo. Further efforts are needed to validate PDCD4 as a potential prognostic marker in patients with Barrett's oesophagus.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Haruko Nakano ◽  
Xiaoqian Liu ◽  
Armin Arshi ◽  
Ben van Handel ◽  
Rajkumar Sasidharan ◽  
...  

The circulatory system is the first functional organ system that develops during mammalian life. Accumulating evidences suggest that cardiac and endocardial cells can arise from a single common progenitor cell during mammalian cardiogenesis. Notably, these early cardiac progenitors express multiple hematopoietic transcription factors, consistent with previous reports. Indeed, a close relationship among cardiac, endocardial and hematopoietic lineages has been suggested in fly, zebrafish, and embryonic stem cell in vitro differentiation models. However, it is unclear when, where and how this hematopoietic gene program is in operation during in vivo mammalian cardiogenesis. Hematopoietic colony assay suggests that mouse heart explants generate myeloids and erythroids in the absence of circulation, suggesting that the heart tube is a de novo site for the definitive hematopoiesis. Lineage tracing revealed that putative cardiac-derived Nkx2-5+/Isl1+ endocardial cells give rise to CD41+ hematopoietic progenitors that contribute to definitive hematopoiesis in vivo and ex vivo during embryogenesis earlier than in the AGM region. Furthermore, Nkx2-5 and Isl1 are both required for the hemogenic activity of the endocardium. Together, identification of Nkx2-5/Isl1-dependent hemogenic endocardial cells (1) adds hematopoietic component in the cardiogenesis lineage tree, (2) changes the long-held dogma that AGM is the only major source of definitive hematopoiesis in the embryo proper, and (3) represents phylogenetically conserved fundamental mechanism of cardio-vasculo-hematopoietic differentiation pathway during the development of circulatory system.


Reproduction ◽  
2007 ◽  
Vol 134 (2) ◽  
pp. 241-252 ◽  
Author(s):  
A M Lobascio ◽  
F G Klinger ◽  
M L Scaldaferri ◽  
D Farini ◽  
M De Felici

We report a short-term culture system that allowsto define novel characteristic of programmed cell death (PCD) in fetal oocytes and to underscore newaspects of this process. Mouse fetal oocytes culturedin conditions allowingmeiotic prophase I progression underwent apoptotic degeneration waves as revealed by TUNEL staining. TEM observations revealed recurrent atypical apoptotic morphologies characterized by the absence of chromatin margination and nuclear fragmentation; oocytes with autophagic and necrotic features were also observed. Further characterization of oocyte death evidenced DNA ladder, Annexin V binding, PARP cleavage, and usually caspase activation (namely caspase-2). In the aim to modulate the oocyte death process, we found that the addition to the culture medium of the pancaspase inhibitors Z-VAD orcaspase-2-specific inhibitor Z-VDVAD resulted in a partial and transient prevention of this process. Oocyte death was significantly reduced by the antioxidant agent NAC and partly prevented by KL and IGF-I growth factors. Finally, oocyte apoptosis was reduced by calpain inhibitor I and increased by rapamycin after prolonged culture.These results support the notion that fetal oocytes undergo degeneration mostly by apoptosis. This process is, however, often morphologically atypical and encompasses other forms of cell death including caspase-independent apoptosis and autophagia. The observation that oocyte death occurs mainly at certain stages of meiosis and can only be attenuated by typical anti-apoptotic treatments favors the notion that it is controlled at least in part by stage-specific oocyte-autonomous meiotic checkpoints and when activated is little amenable to inhibition being the oocyte able to switch back and forth among different death pathways.


2012 ◽  
Vol 209 (6) ◽  
pp. 1201-1217 ◽  
Author(s):  
Tadashi Yokosuka ◽  
Masako Takamatsu ◽  
Wakana Kobayashi-Imanishi ◽  
Akiko Hashimoto-Tane ◽  
Miyuki Azuma ◽  
...  

Programmed cell death 1 (PD-1) is a negative costimulatory receptor critical for the suppression of T cell activation in vitro and in vivo. Single cell imaging elucidated a molecular mechanism of PD-1–mediated suppression. PD-1 becomes clustered with T cell receptors (TCRs) upon binding to its ligand PD-L1 and is transiently associated with the phosphatase SHP2 (Src homology 2 domain–containing tyrosine phosphatase 2). These negative costimulatory microclusters induce the dephosphorylation of the proximal TCR signaling molecules. This results in the suppression of T cell activation and blockade of the TCR-induced stop signal. In addition to PD-1 clustering, PD-1–TCR colocalization within microclusters is required for efficient PD-1–mediated suppression. This inhibitory mechanism also functions in PD-1hi T cells generated in vivo and can be overridden by a neutralizing anti–PD-L1 antibody. Therefore, PD-1 microcluster formation is important for regulation of T cell activation.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3247
Author(s):  
Lingxiao Ye ◽  
Zhengxin Zhu ◽  
Xiaochuan Chen ◽  
Haoran Zhang ◽  
Jiaqi Huang ◽  
...  

Binding of programmed cell death ligand 1 (PD-L1) to its receptor programmed cell death protein 1 (PD-1) can lead to the inactivation of cytotoxic T lymphocytes, which is one of the mechanisms for immune escape of tumors. Immunotherapy based on this mechanism has been applied in clinic with some remaining issues such as drug resistance. Exosomal PD-L1 derived from tumor cells is considered to play a key role in mediating drug resistance. Here, the effects of various tumor-derived exosomes and tumor-derived exosomal PD-L1 on tumor progression are summarized and discussed. Researchers have found that high expression of exosomal PD-L1 can inhibit T cell activation in in vitro experiments, but the function of exosomal PD-L1 in vivo remains controversial. In addition, the circulating exosomal PD-L1 has high potential to act as an indicator to evaluate the clinical effect. Moreover, therapeutic strategy targeting exosomal PD-L1 is discussed, such as inhibiting the biogenesis or secretion of exosomes. Besides, some specific methods based on the strategy of inhibiting exosomes are concluded. Further study of exosomal PD-L1 may provide an effective and safe approach for tumor treatment, and targeting exosomal PD-L1 by inhibiting exosomes may be a potential method for tumor treatment.


Sign in / Sign up

Export Citation Format

Share Document