scholarly journals A small molecular compound CC1007 induces cross-lineage differentiation by inhibiting HDAC7 expression and HDAC7/MEF2C interaction in BCR-ABL1− pre-B-ALL

2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Zhihua Wang ◽  
Yang Zhang ◽  
Shicong Zhu ◽  
Hongling Peng ◽  
Yongheng Chen ◽  
...  

Abstract Histone deacetylase 7 (HDAC7), a member of class IIa HDACs, has been described to be an important regulator for B cell development and has a potential role in B cell acute lymphoblastic leukemia (B-ALL). CC1007, a BML-210 analog, is designed to indirectly inhibit class IIa HDACs by binding to myocyte enhancer factor-2 (MEF2) and blocking the recruitment of class IIa HDACs to MEF2-targeted genes to enhance the expression of these targets. In this study, we investigated the anticancer effects of CC1007 in breakpoint cluster region-Abelson 1 fusion gene-negative (BCR-ABL1−) pre-B-ALL cell lines and primary patient-derived BCR-ABL1− pre-B-ALL cells. CC1007 had obvious antileukemic activity toward pre-B-ALL cells in vitro and in vivo; it also significantly prolonged median survival time of pre-B-ALL-bearing mice. Interestingly, low dose of CC1007 could inhibit proliferation of BCR-ABL1− pre-B-ALL cells in a time-dependent manner not accompanied by significant cell apoptosis, but along with cross-lineage differentiation toward monocytic lineage. From a mechanistic angle, we showed that HDAC7 was overexpressed in BCR-ABL1− pre-B-ALL cells compared to normal bone marrow samples, and CC1007 could reduce the binding of HDAC7 at the promoters of monocyte–macrophage-specific genes via inhibition of HDAC7 expression and HDAC7:MEF2C interaction. These data indicated that CC1007 may be a promising agent for the treatment of BCR-ABL1− pre-B-ALL.

Blood ◽  
2020 ◽  
Vol 136 (2) ◽  
pp. 210-223 ◽  
Author(s):  
Eun Ji Gang ◽  
Hye Na Kim ◽  
Yao-Te Hsieh ◽  
Yongsheng Ruan ◽  
Heather A. Ogana ◽  
...  

Abstract Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.


Blood ◽  
2021 ◽  
Author(s):  
Alexandra Sipol ◽  
Erik Hameister ◽  
Busheng Xue ◽  
Julia Hofstetter ◽  
Maxim Barenboim ◽  
...  

Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired anti-metabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is to reprogram gene expression in a metabolism-dependent manner. MondoA (also known as MLXIP), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets we found that MondoA overexpression is associated with a worse survival in pediatric common acute lymphoblastic leukemia (B-ALL). Using CRISPR/Cas9 and RNA interference approaches, we observed that MondoA depletion reduces transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid (TCA) cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced PDH activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give a novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 810-810 ◽  
Author(s):  
Haiying Qin ◽  
Sang M Nguyen ◽  
Sneha Ramakrishna ◽  
Samiksha Tarun ◽  
Lila Yang ◽  
...  

Abstract Treatment of pre-B cell acute lymphoblastic leukemia (ALL) using chimeric antigen receptor expressing T cells (CART) targeting CD19 have demonstrated impressive clinical results in children and young adults with up to 70-90% complete remission rate in multiple clinical trials. However, about 30% of patients relapse due to loss of the targeted epitope on CD19 or CART failure. Our CD22-targeted CAR trial has generated promising results in relapsed/refractory ALL, including CD19 antigen negative ALL, but relapse associated with decreased CD22 site density has occurred. Thus, developing strategies to prevent relapses due to changes in antigen expression have the potential to increase the likelihood of durable remissions. In addition, dual targeting of both CD19 and CD22 on pre-B ALL may be synergistic compared to targeting a single antigen, a potential approach to improve efficacy in patients with heterogeneous expression of CD19 and CD22 on leukemic blasts. We describe the systematic development and comparison of the structure and therapeutic function of three different types (over 15 different constructs) of novel CARs targeting both CD19 and CD22: (1) Bivalent Tandem CAR, (2) Bivalent Loop CAR, and (3) Bicistronic CAR. These dual CARs were assembled using CD19- and CD22-binding single chain fragment variable (scFv) regions derived from clinically validated single antigen targeted CARs. They are structurally different in design: both tandem and loop CARs have the CD19 and CD22 scFv covalently linked in the same CAR in different orders, whereas, bicistronic CARs have 2 complete CAR constructs connected with a cleavable linker. The surface expression on the transduced T cell of the CD19/CD22 dual CARs was detected with CD22 Fc and anti-idiotype of CD19 and compared to single CD19 or CD22 CARs. Activities of dual CARs to either CD19 or CD22 were evaluated in vitro with cytotoxicity assays or killing assays against K562 cells expressing either CD19 or CD22 or both antigens and also tested against a leukemia CD19+/CD22+ cell line, NALM6, and NALM6 with CRISPER/CAS9 knockout of CD19 or CD22 or both antigens. Therapeutic function of the top candidates of the dual CARs was then validated in vivo against these NALM6 leukemia lines. Some of these dual CARs were also further tested against patient-derived xenografts. Finally, we tested the dual targeting CARs in an artificial relapse model in which mice were co-injected with a mix of CD19 knockout and CD22 knockout NALM6 leukemia lines. From these studies, we established that the order of the scFv, size of the linker, type of leader sequence, and co-stimulatory domain in the CAR constructs all impact the efficacy of the dual targeting CARs. Tandem, Loop, and Bicistronic CARs all demonstrate some levels of in vitro and in vivo activities, but the bicistronic CAR was most effective at clearing leukemia and preventing relapse. In the CD19+/CD22+ NALM6 model, bicistronic CAR treated mice remain disease free while CD19 CAR or CD22 CAR treated mice already died or relapsed on day 27. In the relapse model, as expected, CD19 or CD22 single CAR T cell treatment resulted in progression of the corresponding antigen-negative NALM6. Treatment with dual targeted bicistronic CARs resulted in clearance of both CD19 and CD22 negative ALL with durable remission. In summary, we described novel CD19/CD22 dual targeting CARs with robust pre-clinical activity against pre-B cell ALL, and validated this approach in the prevention of resistance to single-antigen targeted CARs in preclinical models. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Simeng Zhang ◽  
Zhongyan Hua ◽  
Gen Ba ◽  
Ning Xu ◽  
Jianing Miao ◽  
...  

Abstract Background Neuroblastoma (NB) is a common solid malignancy in children that is associated with a poor prognosis. Although the novel small molecular compound Dimethylaminomicheliolide (DMAMCL) has been shown to induce cell death in some tumors, little is known about its role in NB. Methods We examined the effect of DMAMCL on four NB cell lines (NPG, AS, KCNR, BE2). Cellular confluence, survival, apoptosis, and glycolysis were detected using Incucyte ZOOM, CCK-8 assays, Annexin V-PE/7-AAD flow cytometry, and Seahorse XFe96, respectively. Synergistic effects between agents were evaluated using CompuSyn and the effect of DMAMCL in vivo was evaluated using a xenograft mouse model. Phosphofructokinase-1, liver type (PFKL) expression was up- and down-regulated using overexpression plasmids or siRNA. Results When administered as a single agent, DMAMCL decreased cell proliferation in a time- and dose-dependent manner, increased the percentage of cells in SubG1 phase, and induced apoptosis in vitro, as well as inhibiting tumor growth and prolonging survival in tumor-bearing mice (NGP, BE2) in vivo. In addition, DMAMCL exerted synergistic effects when combined with etoposide or cisplatin in vitro and displayed increased antitumor effects when combined with etoposide in vivo compared to either agent alone. Mechanistically, DMAMCL suppressed aerobic glycolysis by decreasing glucose consumption, lactate excretion, and ATP production, as well as reducing the expression of PFKL, a key glycolysis enzyme, in vitro and in vivo. Furthermore, PFKL overexpression attenuated DMAMCL-induced cell death, whereas PFKL silencing promoted NB cell death. Conclusions The results of this study suggest that DMAMCL exerts antitumor effects on NB both in vitro and in vivo by suppressing aerobic glycolysis and that PFKL could be a potential target of DMAMCL in NB.


Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2168-2174 ◽  
Author(s):  
A. Castellanos ◽  
B. Pintado ◽  
E. Weruaga ◽  
R. Arévalo ◽  
A. López ◽  
...  

Abstract BCR-ABLp190 oncogene is the result of a reciprocal translocation between chromosomes 9 and 22 and is associated with B-cell acute lymphoblastic leukemia (B-ALL) in humans. Current models expressing the BCR-ABLp190 chimeric gene fail to consistently reproduce the phenotype with which the fusion gene is associated in human pathology, mainly due to the difficulty of being expressed in the appropriate cell type in vivo. We have used here homologous recombination in ES cells to create an in-frame fusion of BCR-ABLp190 that mimics the consequences of the human chromosomal translocation by fusion of BCR-ABL coding sequences into the bcr endogenous gene. The chimeric mice generated with the mutant embryonic stem cells systematically develop B-ALL. Using these chimeric mice, we further show that BCR-ABL oncogene does not require the endogenous bcr product in leukemogenesis. Our results show that BCR-ABLp190 chimeric mice are a new model to study the biology of the BCR-ABL oncogene and indicate the efficacy of this strategy for studying the role of specific chromosome abnormalities in tumor development.


Blood ◽  
2008 ◽  
Vol 112 (9) ◽  
pp. 3798-3806 ◽  
Author(s):  
Jaime Acquaviva ◽  
Xiaoren Chen ◽  
Ruibao Ren

Interferon regulatory factor-4 (IRF-4) is a hematopoietic cell–restricted transcription factor important for hematopoietic development and immune response regulation. It was also originally identified as the product of a proto-oncogene involved in chromosomal translocations in multiple myeloma. In contrast to its oncogenic function in late stages of B lymphopoiesis, expression of IRF-4 is down-regulated in certain myeloid and early B-lymphoid malignancies. In this study, we found that the IRF-4 protein levels are increased in lymphoblastic cells transformed by the BCR/ABL oncogene in response to BCR/ABL tyrosine kinase inhibitor imatinib. We further found that IRF-4 deficiency enhances BCR/ABL transformation of B-lymphoid progenitors in vitro and accelerates disease progression of BCR/ABL-induced acute B-lymphoblastic leukemia (B-ALL) in mice, whereas forced expression of IRF-4 potently suppresses BCR/ABL transformation of B-lymphoid progenitors in vitro and BCR/ABL-induced B-ALL in vivo. Further analysis showed that IRF-4 inhibits growth of BCR/ABL+ B lymphoblasts primarily through negative regulation of cell-cycle progression. These results demonstrate that IRF-4 functions as tumor suppressor in early B-cell development and may allow elucidation of new molecular pathways significant to the lymphoid leukemogenesis by BCR/ABL. The context dependent roles of IRF-4 in oncogenesis should be an important consideration in developing cancer therapies targeting IRF-4.


2002 ◽  
Vol 196 (5) ◽  
pp. 705-711 ◽  
Author(s):  
Juli P. Miller ◽  
David Izon ◽  
William DeMuth ◽  
Rachel Gerstein ◽  
Avinash Bhandoola ◽  
...  

Little is known about the signals that promote early B lineage differentiation from common lymphoid progenitors (CLPs). Using a stromal-free culture system, we show that interleukin (IL)-7 is sufficient to promote the in vitro differentiation of CLPs into B220+ CD19+ B lineage progenitors. Consistent with current models of early B cell development, surface expression of B220 was initiated before CD19 and was accompanied by the loss of T lineage potential. To address whether IL-7 receptor (R) activity is essential for early B lineage development in vivo, we examined the frequencies of CLPs and downstream pre–pro- and pro-B cells in adult mice lacking either the α chain or the common gamma chain (γc) of the IL-7R. The data indicate that although γc−/− mice have normal frequencies of CLPs, both γc−/− and IL-7Rα−/− mice lack detectable numbers of all downstream early B lineage precursors, including pre–pro-B cells. These findings challenge previous notions regarding the point in B cell development affected by the loss of IL-7R signaling and suggest that IL-7 plays a key and requisite role during the earliest phases of B cell development.


Author(s):  
Muhammad Ali ◽  
Eirini Giannakopoulou ◽  
Yingqian Li ◽  
Madeleine Lehander ◽  
Stina Virding Culleton ◽  
...  

AbstractUnlike chimeric antigen receptors, T-cell receptors (TCRs) can recognize intracellular targets presented on human leukocyte antigen (HLA) molecules. Here we demonstrate that T cells expressing TCRs specific for peptides from the intracellular lymphoid-specific enzyme terminal deoxynucleotidyl transferase (TdT), presented in the context of HLA-A*02:01, specifically eliminate primary acute lymphoblastic leukemia (ALL) cells of T- and B-cell origin in vitro and in three mouse models of disseminated B-ALL. By contrast, the treatment spares normal peripheral T- and B-cell repertoires and normal myeloid cells in vitro, and in vivo in humanized mice. TdT is an attractive cancer target as it is highly and homogeneously expressed in 80–94% of B- and T-ALLs, but only transiently expressed during normal lymphoid differentiation, limiting on-target toxicity of TdT-specific T cells. TCR-modified T cells targeting TdT may be a promising immunotherapy for B-ALL and T-ALL that preserves normal lymphocytes.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 969-969
Author(s):  
Sibasish Dolai ◽  
Keith CS Sia ◽  
Alissa K Robbins ◽  
Ling Zhong ◽  
Sue Heatley ◽  
...  

Abstract Introduction: While cure rates for children with acute lymphoblastic leukemia (ALL) are approaching 90% with conventional chemotherapeutic regimens, certain high-risk patient subsets such as early T-cell precursor ALL (ETP-ALL) and Philadelphia Chromosome-like (Ph-like) ALL have an aggressive disease profile and poor prognosis. More recently whole genome and transcriptome sequencing of these high-risk subtypes have revealed several activating gene fusions, alterations and mutations that could result in constitutively activated tyrosine kinases (TKs). Activated TKs are then capable of phosphorylating downstream substrates and impacting several key signaling pathways, resulting in increased cell survival, proliferation and differentiation. Further, the highly heterogeneous nature of these subtypes, along with activating fusions/mutations, makes them refractory to standard chemotherapy. Consequently, there is an urgent need to develop tailored therapeutic strategies for the treatment of these high-risk ALL subtypes. Recent advances in mass-spectrometry and the use of anti-phosphotyrosine antibodies for enrichment of tyrosine phosphorylated peptides have greatly facilitated characterization of the global tyrosine phosphorylation state in cancer cells and identified activated TKs that could be therapeutically targeted. Here we present the first study to quantitatively profile TK activity in xenografted patient biopsies of high-risk pediatric ALL. Methods: In this study, we have established an MS-based phosphotyrosine profiling approach in patient derived xenografts (PDXs) of high-risk pediatric ALL patients and integrated it with a spike-in SILAC quantitative tool to identify and quantify dysregulated TK activity across 16 PDXs. We further extended our study on markedly altered tyrosine phosphorylation in 4 PDXs to assess the therapeutic potential of specific TK inhibitors (TKIs). Immunoblots were performed to validate activated sites and their dephosphorylation upon TKI treatment. RT-PCR and Exome sequencing was carried out to detect novel fusion partners and point mutation sites to validate the activated TK profiles in these PDXs. In vitro cytotoxicity was assessed by mitochondrial metabolic activity assay (Alamar blue) following 48h drug exposures. PDXs were established from ETP-ALL, Ph-like ALL, B-cell precursor (BCP)-ALL, or T-lineage ALL (T-ALL) bone marrow or peripheral blood (PB) biopsies in immune-deficient (NOD/SCID or NSG) mice. Engraftment and in vivo drug responses were assessed by enumeration of the proportion of human versus mouse CD45+cells in the murine PB. Results: Using a quantitative phosphotyrosine profiling method in 16 PDXs, we mapped close to 1900 class I phosphosites with >0.75 localization probability and 99% confidence, of which 1394 tyrosine phosphorylated sites had a heavy SILAC partner that allowed quantification. Such profiling could accurately classify the leukemias into either T or B-cell lineages with the high-risk ETP and Ph-like ALL clustering as a distinct group. In particular, PDXs with activated tyrosine phosphorylation profiles of ABL1, FLT3 and JAK were targeted with commercially available TKIs both in vitro and in vivo. Subsequent analysis to investigate the aberrant ABL1 and FLT3 signaling showed a NUP214-ABL1 translocation unique to BCP-ALL in one PDX, and a novel Y572S FLT3 mutation in another. Importantly, using a pre-clinical in vivo xenograft model, the activated JAK-STAT signaling observed in one ETP-ALL PDX was targeted with the JAK1/2 inhibitor, ruxolitinib, leading to a significant decrease in the leukemic blast population in the murine PB. Aberrant ABL1 kinase signaling indicated dasatinib treatment in a Ph+-ALL PDX and a PDX with high phospho-ABL1 (harboring the NUP214-ABL1 translocation), and a complete response and significant progression delay, respectively, were achieved in vivo. Similarly, the uniquely activated FLT3 in one PDX (Y572S mutation) correlated with an in vivoobjective response to the multi-kinase inhibitor sunitinib. Conclusions: This study demonstrates the direct application of an unbiased and quantitative tool to identify aberrant TK signaling in high-risk ALL PDXs and highlights its potential to identify tractable drug targets. This research was supported by NCI NO1CM42216 and by the Australian National Health and Medical Research Council. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document