scholarly journals WBP2 negatively regulates the Hippo pathway by competitively binding to WWC3 with LATS1 to promote non-small cell lung cancer progression

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Qiang Han ◽  
Xuezhu Rong ◽  
Xuyong Lin ◽  
Xiupeng Zhang ◽  
Chuifeng Fan ◽  
...  

AbstractWW domain binding protein-2 (WBP2) can function as a Yes-associated protein/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) co-activator and has a crucial role in promoting breast cancer progression. However, the expression and potential molecular mechanisms of WBP2 in the context of lung cancer are not fully understood. We determined that WBP2 was highly expressed in lung cancer specimens and cell lines and that this expression was closely related to the advanced pTNM stage, lymph node metastasis, and poor prognosis of patients. In addition, gain- and loss-of-function experiments revealed that WBP2 could significantly promote the proliferation and invasion of lung cancer cells both in vivo and in vitro. To elucidate the underlying molecular mechanism, we determined that wild-type WBP2 could competitively bind to the WW domain of WWC3 (WW and C2 domain-containing-3) with LATS1 (Large tumor suppressor-1) through its PPxY motifs, thus inhibiting the formation of the WWC3-LATS1 complex, reducing the phosphorylation level of LATS1, suppressing the activity of the Hippo pathway, and ultimately promoting YAP nuclear translocation. Therefore, from the aspect of upstream molecules of Hippo signaling, WBP2 promotes the malignant phenotype of lung cancer cells in a unique manner that is not directly dependent upon YAP, thus providing a corresponding experimental basis for the development of targeted therapeutic drugs for lung cancer.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jun Zhang ◽  
Xian Zhang ◽  
Shasha Yang ◽  
Yanqiu Bao ◽  
Dongyuan Xu ◽  
...  

Abstract Background The expression of forkhead box protein H1 (FOXH1) is frequently upregulated in various cancers. However, the molecular mechanisms underlying the association between FOXH1 expression and lung cancer progression still remain poorly understood. Thus, the main objective of this study is to explore the role of FOXH1 in lung cancer. Methods The Cancer Genome Atlas dataset was used to investigate FOXH1 expression in lung cancer tissues, and the Kaplan–Meier plotter dataset was used to determine the role of FOXH1 in patient prognosis. A549 and PC9 cells were transfected with short hairpin RNA targeting FOXH1 mRNA. The Cell Counting Kit-8, colony formation, soft agar, wound healing, transwell invasion and flow cytometry assays were performed to evaluate proliferation, migration and invasion of lung cancer cells. Tumorigenicity was examined in a BALB/c nude mice model. Western blot analysis was performed to assess the molecular mechanisms, and β-catenin activity was measured by a luciferase reporter system assay. Results Higher expression level of FOXH1 was observed in tumor tissue than in normal tissue, and this was associated with poor overall survival. Knockdown of FOXH1 significantly inhibited lung cancer cell proliferation, migration, invasion, and cycle. In addition, the mouse xenograft model showed that knockdown of FOXH1 suppressed tumor growth in vivo. Further experiments revealed that FOXH1 depletion inhibited the epithelial-mesenchymal transition of lung cancer cells by downregulating the expression of mesenchymal markers (Snail, Slug, matrix metalloproteinase-2, N-cadherin, and Vimentin) and upregulating the expression of an epithelial marker (E-cadherin). Moreover, knockdown of FOXH1 significantly downregulated the activity of β-catenin and its downstream targets, p-GSK-3β and cyclin D1. Conclusion FOXH1 exerts oncogenic functions in lung cancer through regulation of the Wnt/β-catenin signaling pathway. FOXH1 might be a potential therapeutic target for patients with certain types of lung cancer.


2019 ◽  
Vol Volume 11 ◽  
pp. 3395-3410 ◽  
Author(s):  
Xuezhu Rong ◽  
Qiang Han ◽  
Xuyong Lin ◽  
Joachim Kremerskothen ◽  
Enhua Wang

2021 ◽  
Author(s):  
Si Wang ◽  
Qiang Han ◽  
Xue-Zhu Rong ◽  
Ming-Fang Sun ◽  
Ke-Xin Diao ◽  
...  

Abstract Background: SIPA1L3 is a member of the signal-induced proliferation-associated (SIPA) protein family, only limited data about the SIPA1L3 are currently available in human carcinoma. Our present study provides the expression pattern and function of SIPA1L3 in non-small cell lung cancer (NSCLC).Methods: We performed immunohistochemistry to detect the distribution of SIPA1L3 in NSCLC specimens and analyzed the relationship between SIPA1L3 expression and patients clinicopathological feature. We used small interfering RNA (siRNA) to specifically silence SIPA1L3, then investigated its effect on cell growth and invasion in human lung cancer cell lines. Western blot and immunoprecipitation were performed to show the interaction of SIPA1L3 with the core proteins of Hippo pathway, and the Hippo pathway activity.Results: Immunohistochemical staining showed that SIPA1L3 was cytoplasmic increasing in 147 of 217 cases. High levels of SIPA1L3 expression were associated with poor differentiation and a high tumor node metastasis stage, positive lymph nodal status, and poor prognosis. Downregulation of SIPA1L3 inhibited cell EMT, growth, and invasion. As well as SIPA1L3 inhibited Hippo pathway. SIPA1L3 interacted with AMOT, which inhibited AMOT binding to Pals, then decreased nuclear location of YAP.Conclusions: SIPA1L3 overexpression may be a marker for advanced NSCLC. SIPA1L3 reduction inhibits the proliferative and invasive ability of the lung cancer cells, which involves the Hippo pathway by contacting with AMOT.


Oncogene ◽  
2019 ◽  
Vol 38 (42) ◽  
pp. 6801-6817 ◽  
Author(s):  
Giulia Gobbi ◽  
Benedetta Donati ◽  
Italo Faria Do Valle ◽  
Francesca Reggiani ◽  
Federica Torricelli ◽  
...  

2020 ◽  
Author(s):  
Qiang Han ◽  
Xuezhu Rong ◽  
Xu-Yong Lin ◽  
Xiupeng Zhang ◽  
Chuifeng Fan ◽  
...  

Abstract Background: WW domain binding protein-2 (WBP2) can function as a YAP/TAZ co-activator and play a vital role in promoting breast cancer progression. However, the expression and potential molecular mechanism of WBP2 in the context of lung cancer are not fully understood. Methods: Expression and subcellular localization of WBP2 in clinical samples and in lung cancer cell lines were analyzed with respect to various clinical pathological parameters using Chi-square tests. We used a series of cell function experiments and tumor formation experiments in nude mice to verify the effect of WBP2 on tumor cell proliferation and invasion. Dual-directional regulation of WBP2 expression, immunoprecipitation, luciferase reporter assays, and quantitative PCR analyses were used to explore the regulatory mechanisms and identify associated molecular markers.Results: We determined that WBP2 was highly expressed in lung cancer specimens and cell lines and that this expression was closely related to the pTNM stage, lymph node metastasis, and poor prognosis of patients. Additionally, gain and loss of function experiments revealed that WBP2 could significantly promote the proliferation and invasion of lung cancer cells both in vivo and in vitro. To elucidate the underlying molecular mechanism, we determined that wild-type WBP2 could competitively bind to the WW domain of WWC3 with LATS1 through its PPxY motifs to inhibit the formation of the WWC3-LATS1 complex, reduce the phosphorylation level of LATS1, and ultimately promote YAP nuclear translocation to suppress the activity of the Hippo pathway. Conclusions: From the aspect of upstream molecules of Hippo signaling, WBP2 promotes the malignant phenotype of lung cancer cells in a unique manner that is not directly dependent upon YAP, thus providing a corresponding experimental basis for the development of targeted therapeutic drugs for lung cancer.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ronggang Luo ◽  
Yi Zhuo ◽  
Quan Du ◽  
Rendong Xiao

Abstract Background To detect and investigate the expression of POU domain class 2 transcription factor 2 (POU2F2) in human lung cancer tissues, its role in lung cancer progression, and the potential mechanisms. Methods Immunohistochemical (IHC) assays were conducted to assess the expression of POU2F2 in human lung cancer tissues. Immunoblot assays were performed to assess the expression levels of POU2F2 in human lung cancer tissues and cell lines. CCK-8, colony formation, and transwell-migration/invasion assays were conducted to detect the effects of POU2F2 and AGO1 on the proliferaion and motility of A549 and H1299 cells in vitro. CHIP and luciferase assays were performed for the mechanism study. A tumor xenotransplantation model was used to detect the effects of POU2F2 on tumor growth in vivo. Results We found POU2F2 was highly expressed in human lung cancer tissues and cell lines, and associated with the lung cancer patients’ prognosis and clinical features. POU2F2 promoted the proliferation, and motility of lung cancer cells via targeting AGO1 in vitro. Additionally, POU2F2 promoted tumor growth of lung cancer cells via AGO1 in vivo. Conclusion We found POU2F2 was highly expressed in lung cancer cells and confirmed the involvement of POU2F2 in lung cancer progression, and thought POU2F2 could act as a potential therapeutic target for lung cancer.


2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


2021 ◽  
Vol 30 ◽  
pp. 096368972110017
Author(s):  
Jianhao Huang ◽  
Yonghua Zheng ◽  
Xiao Zheng ◽  
Bao Qian ◽  
Qi Yin ◽  
...  

The type II protein arginine methyltransferase 5 (PRMT5) has been engaged in various human cancer development and progression types. Nevertheless, few studies uncover the biological functions of PRMT5 in the epithelial-mesenchymal transition (EMT) of human lung cancer cells, and the associated molecular mechanisms and signaling cascades are entirely unknown. Here, we show that PRMT5 is the ectopic expression in human lung cancer tissues and cell lines. Further study reveals that silencing PRMT5 by lentivirus-mediated shRNA or blocking of PRMT5 by specific inhibitor GSK591 attenuates the expression levels of EMT-related markers in vivo, using the xenograft mouse model. Moreover, our results show that down-regulation of PRMT5 impairs EGFR/Akt signaling cascades in human lung cancer cells, whereas re-expression of PRMT5 recovers those changes, suggesting that PRMT5 regulates EMT probably through EGFR/Akt signaling axis. Altogether, our results demonstrate that PRMT5 serves as a critical oncogenic regulator and promotes EMT in human lung cancer cells. More importantly, our findings also suggest that PRMT5 may be a potential therapeutic candidate for the treatment of human lung cancer.


Sign in / Sign up

Export Citation Format

Share Document